16/8-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD784031 is a product of the μ PD784038 sub-series in the $78 \mathrm{~K} / \mathrm{IV}$ series. It contains various peripheral hardware such as RAM, I/O ports, 8-bit resolution A/D and D/A converters, timers, serial interface, and interrupt functions, as well as a high-speed, high-performance CPU.

The μ PD784031 is a ROM-less product of the μ PD784035 and μ PD784036.

For specific functions and other detailed information, consult the following user's manual.
This manual is required reading for design work.
μ PD784038, 784038Y Sub-Series User's Manual, Hardware : U11316E
78K/IV Series User's Manual, Instruction

Features

- Pin-compatible with the μ PD78234, μ PD784026, and μ PD784038Y sub-series
- Minimum instruction execution time: 125 ns (at 32 MHz)
- Number of I/O ports: 46
- Serial interface: 3 channels

UART/IOE (3-wire serial I/O): 2 channels CSI (3-wire serial I/O, 2-wire serial I/O): 1 channel

- PWM outputs:
- Timer/counters

16 -bit timer/counter $\times 3$ units
16-bit timer $\times 1$ unit

- Standby function HALT/STOP/IDLE mode
- Clock frequency division function
- Watchdog timer: 1 channel
- A/D converter: 8-bit resolution $\times 8$ channels
- D/A converter: 8-bit resolution $\times 2$ channels
- Power supply voltage: VDD = 2.7 to 5.5 V

Applications

LBP, automatic-focusing camera, PPC, printer, electronic typewriter, air conditioner, electronic musical instruments, cellular telephone, etc.

Ordering Information

	Part number	Package	Internal ROM (bytes)
Internal RAM (bytes)			
	80-pin plastic QFP $(14 \times 14 \times 2.7 \mathrm{~mm})$	None	2048
	80-pin plastic QFP $(14 \times 14 \times 1.4 \mathrm{~mm})$	None	2048
	80-pin plastic TQFP (fine pitch $)(12 \times 12 \mathrm{~mm})$	None	2048

The information in this document is subject to change without notice.

* 78K/IV Series Product Development Diagram

Product under mass production
\square Product under development

Standard Products Development

ASSP Development

μ PD784915 sub-series

VCR servo, 100-pin, built-in analog amplifier ROM: $48 \mathrm{~K} / 62 \mathrm{~K}$
μ PD784908 sub-series
100-pin, built-in IEBus ${ }^{\text {TM }}$ controller ROM: 96K/128K
μ PD78F4943 sub-series
80-pin, for CD-ROM
Flash memory: 56K

Functions

Item		Function
Number of basic instructions (mnemonics)		113
General-purpose register		8 bits $\times 16$ registers $\times 8$ banks, or 16 bits $\times 8$ registers $\times 8$ banks (memory mapping)
Minimum instruction execution time		$125 \mathrm{~ns} / 250 \mathrm{~ns} / 500 \mathrm{~ns} / 1000 \mathrm{~ns}$ (at 32 MHz)
Internal memory	ROM	None
	RAM	2048 bytes
Memory space		Program and data: 1M byte
I/O ports	Total	46
	Input	8
	Input/output	34
	Output	4
Additional function pinsNote	Pins with pullup resistor	32
	LED direct drive outputs	8
	Transistor direct drive	8
Real-time output ports		4 bits $\times 2$, or 8 bits $\times 1$
Timer/counter		Timer/counter 0: Timer register $\times 1$ Pulse output capability $(16$ bits $)$ Capture register $\times 1$ • Toggle output Compare register $\times 2$ - PWM/PPG output - One-shot pulse output
		Timer/counter 1: Timer register $\times 1$ Pulse output capability $(8 / 16$ bits $)$ Capture register $\times 1$ C Real-time output (4 bits $\times 2$) Capture/compare register $\times 1$ Compare register $\times 1$
		Timer/counter 2: Timer register $\times 1$ Pulse output capability $(8 / 16$ bits $)$ Capture register $\times 1$ \bullet Toggle output Capture/compare register $\times 1$ \bullet PWM/PPG output Compare register $\times 1$
		Timer 3 $(8 / 16$ bits $)$$\quad: \quad$ Timer register $\times 1$.
PWM outputs		12-bit resolution $\times 2$ channels
Serial interface		UART/IOE (3-wire serial I/O) : 2 channels (incorporating baud rate generator) CSI (3-wire serial I/O, 2-wire serial I/O): 1 channel
A/D converter		8 -bit resolution $\times 8$ channels
D/A converter		8 -bit resolution $\times 2$ channels
Watchdog timer		1 channel
Standby		HALT/STOP/IDLE mode
Interrupt	Hardware source	23 (16 internal, 7 external (sampling clock variable input: 1))
	Software source	BRK instruction, BRKCS instruction, operand error
	Nonmaskable	1 internal, 1 external
	Maskable	15 internal, 6 external
		- 4-level programmable priority - 3 operation statuses: vectored interrupt, macro service, context switching
Supply voltage		$\mathrm{V}_{\text {D }}=2.7$ to 5.5 V
Package		80-pin plastic QFP $(14 \times 14 \times 2.7 \mathrm{~mm})$ 80 -pin plastic QFP $(14 \times 14 \times 1.4 \mathrm{~mm})$ 80 -pin plastic TQFP (fine pitch) $(12 \times 12 \mathrm{~mm})$

Note Additional function pins are included in the I/O pins.

CONTENTS

1. DIFFERENCES BETWEEN μ PD784038 SUB-SERIES 6
2. MAIN DIFFERENCES BETWEEN μ PD784038, μ PD784038Y, μ PD784026, AND μ PD78234 SUB-SERIES 7
3. PIN CONFIGURATION (TOP VIEW) 8
4. SYSTEM CONFIGURATION EXAMPLE (PPC) 10
5. BLOCK DIAGRAM 11
6. LIST OF PIN FUNCTIONS 12
6.1 Port Pins 12
6.2 Non-Port Pins 13
6.3 I/O Circuits for Pins and Handling of Unused Pins 15
7. CPU ARCHITECTURE 18
7.1 Memory Space 18
7.2 CPU Registers 20
7.2.1 General-purpose registers 20
7.2.2 Control registers 21
7.2.3 Special function registers (SFRs) 22
8. PERIPHERAL HARDWARE FUNCTIONS 27
8.1 Ports 27
8.2 Clock Generator 28
8.3 Real-Time Output Port 30
8.4 Timers/Counters 31
8.5 PWM Output (PWM0, PWM1) 33
8.6 A/D Converter 34
8.7 D/A Converter 35
8.8 Serial Interface 36
8.8.1 Asynchronous serial interface/three-wire serial I/O (UART/IOE) 37
8.8.2 Synchronous serial interface (CSI) 39
8.9 Edge Detection Function 40
8.10 Watchdog Timer 40
9. INTERRUPT FUNCTION 41
9.1 Interrupt Source 41
9.2 Vectored Interrupt 43
9.3 Context Switching 44
9.4 Macro Service 44
9.5 Examples of Macro Service Applications 45
10. LOCAL BUS INTERFACE 47
10.1 Memory Expansion 47
10.2 Memory Space 48
10.3 Programmable Wait 49
10.4 Pseudo-Static RAM Refresh Function 49
10.5 Bus Hold Function 49
11. STANDBY FUNCTION 50
12. RESET FUNCTION 51
13. INSTRUCTION SET 52
ぇ 14. ELECTRICAL CHARACTERISTICS 57
14. PACKAGE DRAWINGS 77
15. RECOMMENDED SOLDERING CONDITIONS 80
APPENDIX A DEVELOPMENT TOOLS 82
APPENDIX B RELATED DOCUMENTS 84

1. DIFFERENCES BETWEEN μ PD784038 SUB-SERIES

The only difference between the μ PD784031, μ PD784035, μ PD784036, μ PD784037, and μ PD784038 is their capacity of internal memory.

The $\mu \mathrm{PD} 78 \mathrm{P} 4038$ is produced by replacing the masked ROM in the $\mu \mathrm{PD} 784035, \mu \mathrm{PD} 784036, \mu \mathrm{PD} 784037$, or μ PD784038 with 128K-byte one-time PROM or EPROM. Table 1-1 shows the differences between these products.

Table 1-1. Differences between the μ PD784038 Sub-Series

Product	μ PD784031	μ PD784035	μ PD784036	μ PD784037 (under development)	μ PD784038 (under development)	μ PD78P4038
Internal ROM	None	48 K bytes (masked ROM)	64 K bytes (masked ROM)	96 K bytes (masked ROM)	128 K bytes (masked ROM)	128 K bytes (one-time PROM or EPROM)
Internal RAM	2048 bytes	3584 bytes	4352 bytes			
Package	80 -pin plastic QFP $(14 \times 14 \times 2.7 \mathrm{~mm})$ 80 -pin plastic QFP $(14 \times 14 \times 1.4 \mathrm{~mm})$ 80 -pin plastic TQFP (fine pitch) $(12 \times 12 \mathrm{~mm})$	$80-$ pin ceramic WQFN $(14 \times 14 \mathrm{~mm})$				

2. MAIN DIFFERENCES BETWEEN μ PD784038, μ PD784038Y, μ PD784026, AND μ PD78234 SUBSERIES

Item \quad Series		μ PD784038 sub-series μ PD784038Y sub-series	μ PD784026 sub-series	μ PD78234 sub-series
Number of basic instructions (mnemonics)		113		65
Minimum instruction execution time		$\begin{aligned} & 125 \mathrm{~ns} \\ & \text { (at } 32 \mathrm{MHz} \text {) } \end{aligned}$	$\begin{aligned} & 160 \mathrm{~ns} \\ & \text { (at } 25 \mathrm{MHz} \text {) } \end{aligned}$	$\begin{aligned} & 333 \mathrm{~ns} \\ & \text { (at } 12 \mathrm{MHz} \text {) } \end{aligned}$
Memory space (program/data)		1M byte in total		64K bytes/1M byte
Timer/counter		16-bit timer/counter $\times 1$ 8/16-bit timer/counter $\times 2$ 8/16-bit timer $\times 1$		16-bit timer/counter $\times 1$ 8 -bit timer/counter $\times 2$ 8 -bit timer $\times 1$
Clock output function		Available		Unavailable
Watchdog timer		Available		Unavailable
Serial interface		UART/IOE (3-wire serial I/O) $\times 2$ channels CSI (3-wire serial I/O, 2-wire serial I/O, I²C busNote) $\times 1$ channel	UART/IOE (3-wire serial I/O) $\times 2$ channels CSI (3-wire serial I/O, SBI) $\times 1$ channel	UART $\times 1$ channel CSI (3-wire serial I/O, SBI) $\times 1$ channel
Interrupt	Context switching	Available		Unavailable
	Priority	4 levels		2 levels
Standby function		3 modes (HALT, STOP, IDLE)		2 modes (HALT, STOP)
Operation clock switching		Selectable from $\mathrm{fxx}^{\prime} / 2, \mathrm{ffx}^{\prime} / 4, \mathrm{f}_{\mathrm{xx}} / 8$, or $\mathrm{f}_{\mathrm{xx}} / 16$		Fixed to $\mathrm{fxx} / 2$
Pin functions	MODE pin	Unavailable		To specify ROM-less mode (always in the high level for the μ PD78233 or μ PD78237)
	TEST pin	Pin for testing the device Low level during ordinary use		Unavailable
Package		80-pin plastic QFP $(14 \times 14 \times 2.7 \mathrm{~mm})$ 80-pin plastic QFP $(14 \times 14 \times 1.4 \mathrm{~mm})$ 80-pin plastic TQFP (fine pitch) ($12 \times 12 \mathrm{~mm}$) 80-pin ceramic WQFN ($14 \times 14 \mathrm{~mm}$): for the μ PD78P4038 and μ PD78P4038Y only	80-pin plastic QFP $(14 \times 14 \times 2.7 \mathrm{~mm})$ 80-pin plastic TQFP (fine pitch) ($12 \times 12 \mathrm{~mm}$): for the μ PD784021 only 80-pin ceramic WQFN ($14 \times 14 \mathrm{~mm}$): for the μ PD78P4026 only	80-pin plastic QFP $(14 \times 14 \times 2.7 \mathrm{~mm})$ 94-pin plastic QFP ($20 \times 20 \mathrm{~mm}$) 84-pin plastic QFJ ($1150 \times 1150 \mathrm{mil}$) 94-pin ceramic WQFN ($20 \times 20 \mathrm{~mm}$): for the μ PD78P238 only

Note For the μ PD784038Y sub-series only.

3. PIN CONFIGURATION (TOP VIEW)

- 80 -pin plastic QFP $(14 \times 14 \times 2.7 \mathrm{~mm})$ μ PD784031GC-3B9
- 80-pin plastic QFP $(14 \times 14 \times 1.4 \mathrm{~mm})$ μ PD784031GC-8BT
- 80-pin plastic TQFP (fine pitch) $(12 \times 12 \mathrm{~mm})$ μ PD784031GK-BE9

Note Connect the TEST pin to Vsso directly.

A8-A19	: Address bus
AD0-AD7	Address/data bus
ANIO-ANI7	: Analog input
ANO0, ANO1	: Analog output
ASCK, ASCK2	: Asynchronous serial clock
ASTB	: Address strobe
AVdd	: Analog power supply
AVref1-AVref3	: Reference voltage
AVss	: Analog ground
Cl	: Clock input
HLDAK	: Hold acknowledge
HLDRQ	: Hold request
INTP0-INTP5	: Interrupt from peripherals
NMI	: Non-maskable interrupt
P00-P07	: Port 0
P10-P17	: Port 1
P20-P27	: Port 2
P30-P37	: Port 3
P60-P63, P66,	: Port 6

P70-P77	: Port 7
PWM0, PWM1	: Pulse width modulation output
$\overline{\text { RD }}$: Read strobe
$\overline{\text { REFRQ }}$: Refresh request
$\overline{\text { RESET }}$: Reset
RxD, RxD2	: Receive data
$\overline{\text { SCK0-SCK2 }}$: Serial clock
SCL	: Serial clock
SDA	: Serial data
SI0-SI2	: Serial input
SO0-SO2	: Serial output
TEST	: Test
TO0-TO3	: Timer output
TxD, TxD2	: Transmit data
VDD0, VDD1	: Power supply
Vsso, Vss1	: Ground
$\overline{\text { WAIT }}$: Wait
$\overline{\text { WR }}$: Write strobe
X1, X2	: Crystal

4. SYSTEM CONFIGURATION EXAMPLE (PPC)

5. BLOCK DIAGRAM

6. LIST OF PIN FUNCTIONS

6.1 Port Pins

Pin	I/O	Dual-function	Function
P00-P07	I/O		Port 0 (PO): - 8-bit I/O port. - Functions as a real-time output port (4 bits $\times 2$). - Inputs and outputs can be specified bit by bit. - The use of the pull-up resistors can be specified by software for the pins in the input mode together. - Can drive a transistor.
P10	I/O	PWM0	Port 1 (P1): - 8-bit I/O port. - Inputs and outputs can be specified bit by bit. - The use of the pull-up resistors can be specified by software for the pins in the input mode together. - Can drive LED.
P11		PWM1	
P12		ASCK2/ $\overline{\text { SCK2 }}$	
P13		RxD2/SI2	
P14		TxD2/SO2	
P15-P17			
P20	Input	NMI	Port 2 (P2): - 8 -bit input-only port. - P20 does not function as a general-purpose port (nonmaskable interrupt). However, the input level can be checked by an interrupt service routine. - The use of the pull-up resistors can be specified by software for pins P22 to P27 (in units of 6 bits). - The P25/INTP4/ASCK/ $\overline{\text { SCK1 }}$ pin functions as the $\overline{\text { SCK1 }}$ output pin by CSIM1.
P21		INTP0	
P22		INTP1	
P23		INTP2/CI	
P24		INTP3	
P25		INTP4/ASCK/ $\overline{\text { SCK1 }}$	
P26		INTP5	
P27		SIO	
P30	I/O	RxD/SI1	Port 3 (P3): - 8-bit I/O port. - Inputs and outputs can be specified bit by bit. - The use of the pull-up resistors can be specified by software for the pins in the input mode together.
P31		TxD/SO1	
P32		$\overline{\text { SCKO/SCL }}$	
P33		SO0/SDA	
P34-P37		TO0-TO3	
P60-P63	I/O	A16-A19	Port 6 (P6): - P60 to P63 are an output-only port. - Inputs and outputs can be specified bit by bit for pins P66 and P67. - The use of the pull-up resistors can be specified by software for the pins in the input mode together.
P66		WAIT/HLDRQ	
P67		$\overline{R E F R Q} / \mathrm{HLDAK}$	
P70-P77	I/O	ANIO-ANI7	Port 7 (P7): - 8-bit I/O port. - Inputs and outputs can be specified bit by bit.

6.2 Non-Port Pins (1/2)

Pin	I/O	Dual-function	Function
TO0-TO3	Output	P34-P37	Timer output
Cl	Input	P23/INTP2	Input of a count clock for timer/counter 2
RxD	Input	P30/SI1	Serial data input (UART0)
R×D2		P13/SI2	Serial data input (UART2)
TxD	Output	P31/SO1	Serial data output (UART0)
TxD2		P14/SO2	Serial data output (UART2)
ASCK	Input	P25/INTP4/ $\overline{\text { SCK1 }}$	Baud rate clock input (UART0)
ASCK2		P12/SCK2	Baud rate clock input (UART2)
SDA	I/O	P33/SO0	Serial data I/O (2-wire serial I/O)
SIO	Input	P27	Serial data input (3-wire serial I/OO)
SI1		P30/RxD	Serial data input (3-wire serial I/O1)
SI2		P13/RxD2	Serial data input (3-wire serial I/O2)
SO0	Output	P33/SDA	Serial data output (3-wire serial I/O0)
SO1		P31/TxD	Serial data output (3-wire serial I/O1)
SO2		P14/TxD2	Serial data output (3-wire serial I/O2)
$\overline{\text { SCKO }}$	1/O	P32/SCL	Serial clock I/O (3-wire serial I/O0)
$\overline{\text { SCK1 }}$		P25/INTP4/ASCK	Serial clock I/O (3-wire serial I/O1)
$\overline{\text { SCK2 }}$		P12/ASCK2	Serial clock I/O (3-wire serial I/O2)
SCL		P32/SCK0	Serial clock I/O (2-wire serial I/O)
NMI	Input	P20	External interrupt request
INTPO		P21	- Input of a count clock for timer/counter 1 - Capture/trigger signal for CR11 or CR12
INTP1		P22	- Input of a count clock for timer/counter 2 - Capture/trigger signal for CR22
INTP2		P23/CI	- Input of a count clock for timer/counter 2 - Capture/trigger signal for CR21
INTP3		P24	- Input of a count clock for timer/counter 0 - Capture/trigger signal for CR02
INTP4		P25/ASCK/ $\overline{\text { SCK1 }}$	- -
INTP5		P26	Input of a conversion start trigger for A/D converter
AD0-AD7	1/O	-	Time multiplexing address/data bus (for connecting external memory)
A8-A15	Output	-	High-order address bus (for connecting external memory)
A16-A19	Output	P60-P63	High-order address bus during address expansion (for connecting external memory)
$\overline{\mathrm{RD}}$	Output	-	Strobe signal output for reading the contents of external memory
$\overline{\mathrm{WR}}$	Output	-	Strobe signal output for writing on external memory
WAIT	Input	P66/HLDRQ	Wait signal insertion
$\overline{\mathrm{REFRQ}}$	Output	P67/HLDAK	Refresh pulse output to external pseudo static memory
HLDRQ	Input	P66/WAIT	Input of bus hold request
HLDAK	Output	P67/REFRQ	Output of bus hold response
ASTB	Output	-	Latch timing output of time multiplexing address (AO-A7) (for connecting external memory)

6.2 Non-port pins (2/2)

Pin	1/O	Dual-function	Function
$\overline{\text { RESET }}$	Input	-	Chip reset
X1	Input	-	Crystal input for system clock oscillation (A clock pulse can also be input
X2	-		to the X1 pin.)
ANIO-ANI7	Input	P70-P77	Analog voltage inputs for the A/D converter
ANOO, ANO1	Output	-	Analog voltage inputs for the D/A converter
AVref1	-	-	Application of A/D converter reference voltage
$A V_{\text {ref2, }} \mathrm{AV}_{\text {ref3 }}$			Application of D/A converter reference voltage
AVDD			Positive power supply for the A/D converter
AVss			Ground for the A/D converter
VodoNote 1			Positive power supply of the port part
VDDiNote 1			Positive power supply except for the port part
VssoNote 2			Ground of the port part
VssiNote 2			Ground except for the port part
TEST			Directly connect to Vsso. (The TEST pin is for the IC test.)

Notes 1. The potential of the Vddo pin must be equal to that of the Vodi pin.
2. The potential of the Vsso pin must be equal to that of the Vssi pin.

6.3 I/O Circuits for Pins and Handling of Unused Pins

Table 6-1 describes the types of I/O circuits for pins and the handling of unused pins.
Figure 6-1 shows the configuration of these various types of I/O circuits.

Table 6-1. Types of I/O Circuits for Pins and Handling of Unused Pins (1/2)

Pin	I/O circuit type	I/O	Recommended connection method for unused pins
P00-P07	$5-\mathrm{H}$	I/O	Input state : To be connected to Vodo Output state: To be left open
P10/PWM0			
P11/PWM1			
P12/ASCK2/SCK2	8-C		
P13/RxD2/SI2	$5-\mathrm{H}$		
P14/TxD2/SO2			
P15-P17			
P20/NMI	2	Input	To be connected to VdDo or Vsso
P21/INTP0			
P22/INTP1	$2-C$		To be connected to Vodo
P23/INTP2/CI			
P24/INTP3			
P25/INTP4/ASCK/ $\overline{\text { SCK1 }}$	8-C	I/O	Input state : To be connected to Vodo Output state: To be left open
P26/INTP5	$2-C$	Input	To be connected to Vodo
P27/SI0			
P30/RxD/SI1	$5-\mathrm{H}$	I/O	Input state : To be connected to VdDo Output state: To be left open
P31/TxD/SO1			
P32/SCK0/SCL	10-B		
P33/SO0/SDA			
P34/TO0-P37/TO3	$5-\mathrm{H}$		
AD0-AD7			
A8-A15		OutputNote	To be left open
P60/A16-P63/A19			
$\overline{\mathrm{RD}}$			
$\overline{\mathrm{WR}}$			
P66/WAIT/HLDRQ		I/O	Input state: To be connected to Vodo Output state: To be left open
P67/ $\overline{\text { REFRQ/HLDAK }}$			
P70/ANI0-P77/ANI7	20-A		Input state : To be connected to Vodo or Vsso Output state: To be left open
ANO0, ANO1	12	Output	To be left open
ASTB	4-B		

Note These pins function as output-only pins depending on the internal circuit, though their I/O type is $5-\mathrm{H}$.

Table 6-1. Types of I/O Circuits for Pins and Handling of Unused Pins (2/2)

Pin	I/O circuit type	I/O	Recommended connection method for unused pins
RESET	2	Input	-
TEST	1-A		To be connected to Vsso directly
$A V_{\text {ref1- }}-\mathrm{AV}_{\text {ref3 }}$	-		To be connected to Vsso
AVss			
AVdd			To be connected to Vodo

Caution When the I/O mode of an I/O dual-function pin is unpredictable, connect the pin to VDDo through a resistor of 10 to 100 kilohms (particularly when the voltage of the reset input pin becomes higher than that of the low level input at power-on or when I/O is switched by software).

Remark Since type numbers are consistent in the 78K series, those numbers are not always serial in each product. (Some circuits are not included.)

Figure 6-1. I/O Circuits for Pins
Type 1

7. CPU ARCHITECTURE

7.1 Memory Space

A 1M-byte memory space can be accessed. By using a LOCATION instruction, the mode for mapping internal data areas (special function registers and internal RAM) can be selected. A LOCATION instruction must always be executed after a reset, and can be used only once.
(1) When the LOCATION 0 instruction is executed Internal data areas are mapped to 0F700H-0FFFFH.
(2) When the LOCATION OFH instruction is executed Internal data areas are mapped to FF700H-FFFFFH.

Figure 7-1. μ PD784031 Memory Map

Note Base area, or entry area based on a reset or interrupt. Internal RAM is excluded in the case of a reset.

7.2 CPU Registers

7.2.1 General-purpose registers

A set of general-purpose registers consists of sixteen general-purpose 8-bit registers. Two 8-bit general-purpose registers can be combined to form a 16-bit general-purpose register. Moreover, four 16-bit general-purpose registers, when combined with an 8-bit register for address extension, can be used as 24-bit address specification registers.

Eight banks of this register set are provided. The user can switch between banks by software or the context switching function.

General-purpose registers other than the $\mathrm{V}, \mathrm{U}, \mathrm{T}$, and W registers used for address extension are mapped onto internal RAM.

Figure 7-2. General-Purpose Register Format

Caution By setting the RSS bit of PSW to 1, R4, R5, R6, R7, RP2, and RP3 can be used as the X, A, C, B, $A X$, and $B C$ registers, respectively. However, this function must be used only when using programs for the $78 \mathrm{~K} / \mathrm{III}$ series.

7.2.2 Control registers

(1) Program counter (PC)

This register is a 20-bit program counter. The program counter is automatically updated by program execution.

Figure 7-3. Format of Program Counter (PC)

(2) Program Status Word (PSW)

This register holds the CPU state. The program status word is automatically updated by program execution.

Figure 7-4. Format of Program Status Word (PSW)

Note This flag is used to maintain compatibility with the $78 \mathrm{~K} / \mathrm{III}$ series. This flag must be set to 0 when programs for the $78 \mathrm{~K} /$ III series are being used.
(3) Stack pointer (SP)

This register is a 24 -bit pointer for holding the start address of the stack. The high-order 4 bits must be set to 0 .

Figure 7-5. Format of Stack Pointer (SP)

	20					0
0	0	0	0			

7.2.3 Special function registers (SFRs)

The special function registers are registers with special functions such as mode registers and control registers for built-in peripheral hardware. The special function registers are mapped onto the 256 -byte space between 0FF00H and OFFFFHNote.

Note Applicable when the LOCATION 0 instruction is executed. FFFOOH-FFFFFFH when the LOCATION OFH instruction is executed.

Caution Never attempt to access addresses in this area where no SFR is allocated. Otherwise, the μ PD784031 may be placed in the deadlock state. The deadlock state can be cleared only by a reset.

Table 7-1 lists the special function registers (SFRs). The titles of the table columns are explained below.

- Abbreviation \qquad Symbol used to represent a built-in SFR. The abbreviations listed in the table are reserved words for the NEC assembler (RA78K4). The C compiler (CC78K4) allows the abbreviations to be used as sfr variables with the \#pragma sfr command.
- R/W \qquad Indicates whether each SFR allows read and/or write operations.
R/W : Allows both read and write operations.
R : Allows read operations only.
W : Allows write operations only.
- Manipulatable bits Indicates the maximum number of bits that can be manipulated whenever an SFR is manipulated. An SFR that supports 16-bit manipulation can be described in the sfrp operand. For address specification, an even-numbered address must be specified.
An SFR that supports 1-bit manipulation can be described in a bit manipulation instruction.
- When reset \qquad Indicates the state of each register when $\overline{\text { RESET }}$ is applied.

Table 7-1. Special Function Registers (SFRs) (1/4)

AddressNote	Special function register (SFR) name	Abbreviation		R/W	Manipulatable bits			When reset	
				1 bit	8 bits	16 bits			
OFF00H	Port 0	P0			R/W	0	-	-	Undefined
0FF01H	Port 1	P1		0		-	-		
0FF02H	Port 2	P2		R	0	-	-		
0FF03H	Port 3	P3		R/W	o	○	-		
0FF06H	Port 6	P6			0	o	-	OOH	
0FF07H	Port 7	P7			\bigcirc	○	-	Undefined	
OFF0EH	\square Port 0 buffer register L	POL			o	o	-		
OFFOFH	Port 0 buffer register H	POH			o	0	-		
0FF10H	Compare register (timer/counter 0)	CR00			-	-	o		
0FF12H	Capture/compare register (timer/counter 0)	CR01			-	-	o		
OFF14H	Compare register L (timer/counter 1)	CR10	CR10W		-	-	o		
OFF15H	Compare register H (timer/counter 1)	-			-	-			
0FF16H	Capture/compare register L (timer/counter 1)	CR11	CR11W		-	o	o		
0FF17H	Capture/compare register H (timer/counter 1)	-			-	-			
0FF18H	Compare register L (timer/counter 2)	CR20	CR20W		-	-	o		
OFF19H	Compare register H (timer/counter 2)	-			-	-			
0FF1AH	Capture/compare register L (timer/counter 2)	CR21	CR21W		-	o	o		
0FF1BH	Capture/compare register H (timer/counter 2)	-			-	-			
0FF1CH	Compare register L (timer 3)	CR30	CR30W		-	0	o		
0FF1DH	Compare register H (timer 3)	-			-	-			
0FF20H	Port 0 mode register	PM0			o	\bigcirc	-	FFH	
0FF21H	Port 1 mode register	PM1			o	-	-		
0FF23H	Port 3 mode register	PM3			o	\bigcirc	-		
0FF26H	Port 6 mode register	PM6			o	-	-		
0FF27H	Port 7 mode register	PM7			○	-	-		
OFF2EH	Real-time output port control register	RTPC			o	0	-	00H	
OFF30H	Capture/compare control register 0	CRC0			-	-	-	10H	
0FF31H	Timer output control register	TOC			0	0	-	00 H	
0FF32H	Capture/compare control register 1	CRC1			-	0	-		
0FF33H	Capture/compare control register 2	CRC2			-	○	-	10 H	

Note Applicable when the LOCATION 0 instruction is executed. When the LOCATION OFH instruction is executed, F 0000 H is added to each address.

Table 7-1. Special Function Registers (SFRs) (2/4)

AddressNote	Special function register (SFR) name	Abbreviation		R/W	Manipulatable bits			When reset	
				1 bit	8 bits	16 bits			
0FF36H	Capture register (timer/counter 0)	CR02			R	-	-	0	0000H
0FF38H	Capture register L (timer/counter 1)	CR12	CR12W	-		\bigcirc	0		
0FF39H	Capture register H (timer/counter 1)	-		-		-			
0FF3AH	Capture register L (timer/counter 2)	CR22	CR22W	-		\bigcirc	0		
0FF3BH	Capture register H (timer/counter 2)	-		-		-			
0FF41H	Port 1 mode control register	PMC1		R/W	\bigcirc	○	-	OOH	
0FF43H	Port 3 mode control register	PMC3			\bigcirc	○	-		
0FF4EH	Register for optional pull-up resistor	PUO			\bigcirc	○	-		
OFF50H	Timer register 0	TM0		R	-	-	0	0000H	
0FF51H				-	-				
OFF52H	Timer register 1	TM1	TM1W		-	\bigcirc	0		
0FF53H		-			-	-			
OFF54H	Timer register 2	TM2	TM2W		-	\bigcirc	0		
0FF55H		-			-	-			
0FF56H	Timer register 3	TM3	TM3W		-	○	0		
0FF57H		-			-	-			
0FF5CH	Prescaler mode register 0	PRMO			R/W	-	\bigcirc	-	11 H
0FF5DH	Timer control register 0	TMC0		\bigcirc		o	-	00 H	
0FF5EH	Prescaler mode register 1	PRM1		-		\bigcirc	-	11 H	
0FF5FH	Timer control register 1	TMC1		\bigcirc		\bigcirc	-	00 H	
0FF60H	D/A conversion value setting register 0	DACS0		-		0	-		
0FF61H	D/A conversion value setting register 1	DACS1		-		\bigcirc	-		
0FF62H	D/A converter mode register	DAM		0		\bigcirc	-	03H	
0FF68H	A/D converter mode register	ADM		0		0	-	00H	
0FF6AH	A/D conversion result register	ADCR		R	-	0	-	Undefined	
0FF70H	PWM control register	PWMC		R/W	\bigcirc	0	-	05H	
0FF71H	PWM prescaler register	PWPR			-	o	-	00H	
0FF72H	PWM modulo register 0	PWM0			-	-	\bigcirc	Undefined	
0FF74H	PWM modulo register 1	PWM1			-	-	\bigcirc		
0FF7DH	One-shot pulse output control register	OSPC			\bigcirc	o	-	OOH	
0FF80H	${ }^{12} \mathrm{C}$ bus control register	IICC			\bigcirc	0	-		
0FF81H	Prescaler mode register for serial clock	SPRM			-	○	-	04H	
0FF82H	Synchronous serial interface mode register	CSIM			\bigcirc	○	-	00H	

Note Applicable when the LOCATION 0 instruction is executed. When the LOCATION OFH instruction is executed, F 0000 H is added to each address.

Table 7-1. Special Function Registers (SFRs) (3/4)

AddressNote 1	Special function register (SFR) name	Abbreviation	R/W	Manipulatable bits			When reset
				1 bit	8 bits	16 bits	
0FF84H	Synchronous serial interface mode register 1	CSIM1	R/W	0	0	-	OOH
0FF85H	Synchronous serial interface mode register 2	CSIM2		0	0	-	
0FF86H	Serial shift register	SIO		-	\bigcirc	-	
0FF88H	Asynchronous serial interface mode register	ASIM		0	\bigcirc	-	
0FF89H	Asynchronous serial interface mode register 2	ASIM2		0	0	-	
0FF8AH	Asynchronous serial interface status register	ASIS	R	0	\bigcirc	-	
0FF8BH	Asynchronous serial interface status register 2	ASIS2		0	0	-	
0FF8CH	Serial receive buffer: UART0	RXB		-	0	-	Undefined
	Serial transmission shift register: UART0	TXS	W	-	\bigcirc	-	
	Serial shift register: IOE1	SIO1	R/W	-	0	-	
0FF8DH	Serial receive buffer: UART2	RXB2	R	-	0	-	
	Serial transmission shift register: UART2	TXS2	W	-	\bigcirc	-	
	Serial shift register: IOE2	SIO2	R/W	-	\bigcirc	-	
0FF90H	Baud rate generator control register	BRGC		-	\bigcirc	-	00 H
0FF91H	Baud rate generator control register 2	BRGC2		-	\bigcirc	-	
0 FFAOH	External interrupt mode register 0	INTM0		0	\bigcirc	-	
0FFA1H	External interrupt mode register 1	INTM1		0	0	-	
$0 F F A 4 H$	Sampling clock selection register	SCSO		-	\bigcirc	-	
$0 \mathrm{FFA8H}$	In-service priority register	ISPR	R	0	0	-	
OFFAAH	Interrupt mode control register	IMC	R/W	0	0	-	80 H
OFFACH	Interrupt mask register OL	MKOL MKO		0	0	0	FFFFH
OFFADH	Interrupt mask register OH	MKOH		0	0		
OFFAEH	Interrupt mask register 1L	MK1L		0	0	-	FFH
0 FFCOH	Standby control register	STBC		-	oNote 2	-	30 H
0FFC2H	Watchdog timer mode register	WDM		-	oNote 2	-	OOH
0FFC4H	Memory expansion mode register	MM		0	0	-	20 H
0FFC5H	Hold mode register	HLDM		0	0	-	OOH
0FFC6H	Clock output mode register	CLOM		0	0	-	
0FFC7H	Programmable wait control register 1	PWC1		-	0	-	AAH
0FFC8H	Programmable wait control register 2	PWC2		-	-	0	AAAAH

Notes 1. Applicable when the LOCATION 0 instruction is executed. When the LOCATION OFH instruction is executed, FOOOOH is added to each address.
2. A write operation can be performed only with special instructions MOV STBC,\#byte and MOV WDM,\#byte. Other instructions cannot perform a write operation.

Table 7-1. Special Function Registers (SFRs) (4/4)

AddressNote	Special function register (SFR) name	Abbreviation	R/W	Manipulatable bits			When reset
				1 bit	8 bits	16 bits	
OFFCCH	Refresh mode register	RFM	R/W	0	0	-	00 H
0FFCDH	Refresh area specification register	RFA		o	0	-	
OFFCFH	Oscillation settling time specification register	OSTS		-	0	-	
OFFDOH- OFFDFH	External SFR area	-		0	0	-	-
OFFEOH	Interrupt control register (INTP0)	PIC0		0	o	-	43H
0FFE1H	Interrupt control register (INTP1)	PIC1		0	o	-	
OFFE2H	Interrupt control register (INTP2)	PIC2		0	o	-	
OFFE3H	Interrupt control register (INTP3)	PIC3		0	o	-	
OFFE4H	Interrupt control register (INTC00)	CICOO		0	o	-	
0FFE5H	Interrupt control register (INTC01)	CIC01		0	0	-	
OFFE6H	Interrupt control register (INTC10)	CIC10		0	0	-	
OFFE7H	Interrupt control register (INTC11)	CIC11		0	0	-	
0FFE8H	Interrupt control register (INTC20)	CIC20		0	0	-	
OFFE9H	Interrupt control register (INTC21)	CIC21		0	o	-	
OFFEAH	Interrupt control register (INTC30)	CIC30		0	○	-	
OFFEBH	Interrupt control register (INTP4)	PIC4		○	o	-	
OFFECH	Interrupt control register (INTP5)	PIC5		0	o	-	
OFFEDH	Interrupt control register (INTAD)	ADIC		0	o	-	
OFFEEH	Interrupt control register (INTSER)	SERIC		○	o	-	
OFFEFH	Interrupt control register (INTSR)	SRIC		0	0	-	
	Interrupt control register (INTCSI1)	CSIIC1		0	o	-	
OFFFOH	Interrupt control register (INTST)	STIC		0	0	-	
0FFF1H	Interrupt control register (INTCSI)	CSIIC		0	0	-	
OFFF2H	Interrupt control register (INTSER2)	SERIC2		0	0	-	
0FFF3H	Interrupt control register (INTSR2)	SRIC2		0	0	-	
	Interrupt control register (INTCSI2)	CSIIC2		0	0	-	
OFFF4H	Interrupt control register (INTST2)	STIC2		0	0	-	

Note Applicable when the LOCATION 0 instruction is executed. When the LOCATION OFH instruction is executed, F 0000 H is added to each address.

8. PERIPHERAL HARDWARE FUNCTIONS

8.1 Ports

The ports shown in Figure 8-1 are provided to enable the application of wide-ranging control. Table 8-1 lists the functions of the ports. For the inputs to port 0 to port 6 , a built-in pull-up resistor can be specified by software.

Figure 8-1. Port Configuration

Table 8-1. Port Functions

Port name	Pin	Function	Pull-up specification by software						
Port 0	P00-P07	- Bit-by-bit input/output setting supported - Operable as 4-bit real-time outputs (P00-P03, P04-P07) - Capable of driving transistors	Specified as a batch for all pins placed in input mode.						
Port 1	P10-P17	- Bit-by-bit input/output setting supported - Capable of driving LEDs	Specified as a batch for all pins placed in input mode.						
Port 2	P20-P27	- Input port	Specified for the 6 bits (P22-P27) as a batch.						
Port 3	P30-P37	- Bit-by-bit input/output setting supported	Specified as a batch for all pins placed in input mode.						
Port 6	P60-P63	- Output-only port	Specified as a batch for all pins placed in input mode.						
	P66, P67	- Bit-by-bit input/output setting supported	Port 7 7				P70-P77	- Bit-by-bit input/output setting supported	

8.2 Clock Generator

A circuit for generating the clock signal required for operation is provided. The clock generator includes a frequency divider; low current consumption can be achieved by operating at a lower internal frequency when high-speed operation is not necessary.

Figure 8-2. Block Diagram of Clock Generator

Remark fxx : Oscillator frequency or external clock input
fclk: Internal operating frequency

Figure 8-3. Examples of Using Oscillator
(1) Crystal/ceramic oscillation

(2) External clock

- When EXTC bit of OSTS = 1

- When EXTC bit of OSTS = 0

Caution When using the clock generator, to avoid problems caused by influences such as stray capacitance, run all wiring within the area indicated by the dotted lines according to the following rules:

- Minimize the wiring length.
- Wires must never cross other signal lines.
- Wires must never run near a line carrying a large varying current.
- The grounding point of the capacitor of the oscillator circuit must always be at the same potential as Vss1. Never connect the capacitor to a ground pattern carrying a large current.
- Never extract a signal from the oscillator circuit.

8.3 Real-Time Output Port

The real-time output port outputs data stored in the buffer, synchronized with a timer/counter 1 match interrupt or external interrupt. Thus, pulse output that is free of jitter can be obtained.

Therefore, the real-time output port is best suited to applications (such as open-loop control over stepping motors) where an arbitrary pattern is output at arbitrary intervals.

As shown in Figure 8-4, the real-time output port is built around port 0 and the port 0 buffer register (POH, POL).

Figure 8-4. Block Diagram of Real-Time Output Port

8.4 Timers/Counters

Three timer/counter units and one timer unit are incorporated.
Moreover, seven interrupt requests are supported, allowing these units to function as seven timer/counter units.

Table 8-2. Timer/Counter Operation

Item		Timer/counter 0	Timer/counter 1	Timer/counter 2	Timer 3
Count pulse width	8 bits	-	0	0	0
	16 bits	0	0	0	0
Operating mode	Interval timer	2 ch	2ch	2ch	1ch
	External event counter	0	0	0	-
	One-shot timer	-	-	0	-
Function	Timer output	2ch	-	2ch	-
	Toggle output	0	-	0	-
	PWM/PPG output	0	-	0	-
	One-shot pulse outputNote	0	-	-	-
	Real-time output	-	0	-	-
	Pulse width measurement	1 input	1 input	2 inputs	-
	Number of interrupt requests	2	2	2	1

Note The one-shot pulse output function makes the level of a pulse output active by software, and makes the level of a pulse output inactive by hardware (interrupt request signal).
Note that this function differs from the one-shot timer function of timer/counter 2.

Figure 8-5. Timer/Counter Block Diagram

Timer/counter 0

Timer/counter 1

Timer/counter 2

Timer 3

Remark OVF: Overflow flag

8.5 PWM Output (PWM0, PWM1)

Two channels of PWM (pulse width modulation) output circuitry with a resolution of 12 bits and a repetition frequency of 62.5 kHz (fclk $=16 \mathrm{MHz}$) are incorporated. Low or high active level can be selected for the PWM output channels, independently of each other. This output is best suited to DC motor speed control.

Figure 8-6. Block Diagram of PWM Output Unit

Remark $\mathrm{n}=0,1$

8.6 A/D Converter

An analog/digital (A/D) converter having 8 multiplexed analog inputs (ANIO-ANI7) is incorporated.
The successive approximation system is used for conversion. The result of conversion is held in the 8-bit A/D conversion result register (ADCR). Thus, speedy high-precision conversion can be achieved. (The conversion time is about $7.5 \mu \mathrm{~s}$ at fclk $=16 \mathrm{MHz}$.)

A/D conversion can be started in any of the following modes:

- Hardware start: Conversion is started by means of trigger input (INTP5).
- Software start : Conversion is started by means of bit setting the A/D converter mode register (ADM).

After conversion has started, one of the following modes can be selected:

- Scan mode : Multiple analog inputs are selected sequentially to obtain conversion data from all pins.
- Select mode: A single analog input is selected at all times to enable conversion data to be obtained continuously.

ADM is used to specify the above modes, as well as the termination of conversion.
When the result of conversion is transferred to ADCR, an interrupt request (INTAD) is generated. Using this feature, the results of conversion can be continuously transferred to memory by the macro service.

Figure 8-7. Block Diagram of A/D Converter

8.7 D/A Converter

Two digital/analog (D/A) converter channels of voltage output type, having a resolution of 8 bits, are incorporated.
An R-2R resistor ladder system is used for conversion. By writing the value to be subject to D/A conversion in the 8 -bit D/A conversion value setting register (DACSn: $n=0,1$), the resulting analog value is output on ANOn ($n=0,1$). The range of the output voltages is determined by the voltages applied to the AVrefz and AVref3 pins.

Because of its high output impedance, no current can be obtained from an output pin. When the load impedance is low, insert a buffer amplifier between the load and the converter.

The impedance of the ANOn pin goes high while the RESET signal is low. DACSn is set to 0 after a reset is released.

Figure 8-8. Block Diagram of D/A Converter

Remark $\mathrm{n}=0,1$

8.8 Serial Interface

Three independent serial interface channels are incorporated.

- Asynchronous serial interface (UART)/three-wire serial I/O (IOE) $\times 2$
- Synchronous serial interface (CSI) $\times 1$
- Three-wire serial I/O (IOE)
- Two-wire serial I/O (IOE)

So, communication with points external to the system and local communication within the system can be performed at the same time. (See Figure 8-9.)

Figure 8-9. Example Serial Interfaces

Note Handshake line

8.8.1 Asynchronous serial interface/three-wire serial I/O (UART/IOE)

Two serial interface channels are available; for each channel, asynchronous serial interface mode or three-wire serial I/O mode can be selected.

(1) Asynchronous serial interface mode

In this mode, 1-byte data is transferred after a start bit.
A baud rate generator is incorporated to enable communication at a wide range of baud rates.
Moreover, the frequency of a clock signal applied to the ASCK pin can be divided to define a baud rate.
With the baud rate generator, the baud rate conforming to the MIDI standard (31.25 kbps) can be obtained.

Figure 8-10. Block Diagram of Asynchronous Serial Interface Mode

Remark fxx: Oscillator frequency or external clock input
$\mathrm{n}=0$ to 11
$\mathrm{m}=16$ to 30

(2) Three-wire serial I/O mode

In this mode, the master device makes the serial clock active to start transmission, then transfers 1-byte data in phase with the clock.
This mode is designed for communication with a device incorporating a conventional synchronous serial interface.
Basically, three lines are used for communication: the serial clock line ($\overline{\mathrm{SCK}}$) and the two serial data lines (SI and SO).
In general, a handshake line is required to check the state of communication.

Figure 8-11. Block Diagram of Three-Wire Serial I/O Mode

Remark fxx: Oscillator frequency or external clock input
$\mathrm{n}=0$ to 11
$m=1,16$ to 30

8.8.2 Synchronous serial interface (CSI)

With this interface, the master device makes the serial clock active to start transmission, then transfers 1-byte data in phase with the clock.

Figure 8-12. Block Diagram of Synchronous Serial Interface

Remark fxx: Oscillator frequency or external clock input
(1) Three-wire serial I/O mode

This mode is designed for communication with a device incorporating a conventional synchronous serial interface. Basically, three lines are used for communication: the serial clock line ($\overline{\mathrm{SCKO}}$) and serial data lines (SI0 and SO0). In general, a handshake line is required to check the state of communication.

(2) Two-wire serial I/O mode

In this mode, 8 -bit data is transferred using two lines: the serial clock line (SCL) and serial data bus (SDA).
In general, a handshake line is required to check the communication state.

8.9 Edge Detection Function

The interrupt input pins (NMI, INTP0-INTP5) are used to apply not only interrupt requests but also trigger signals for the built-in circuits. As these pins are triggered by an edge (rising or falling) of an input signal, a function for edge detection is incorporated. Moreover, a noise suppression function is provided to prevent erroneous edge detection caused by noise.

Pin	Detectable edge	Noise suppression method
NMI	Rising edge or falling edge	Analog delay
INTP0-INTP3	Rising edge or falling edge, or both edges	Clock samplingNote
		Analog delay
INTP4, INTP5		

Note INTPO is used for sampling clock selection.

8.10 Watchdog Timer

A watchdog timer is incorporated for CPU runaway detection. The watchdog timer, if not cleared by software within a specified interval, generates a nonmaskable interrupt. Furthermore, once watchdog timer operation is enabled, it cannot be disabled by software. The user can specify whether priority is placed on an interrupt based on the watchdog timer or on an interrupt based on the NMI pin.

Figure 8-13. Block Diagram of Watchdog Timer

9. INTERRUPT FUNCTION

Table 9-1 lists the interrupt request handling modes. These modes are selected by software.

Table 9-1. Interrupt Request Handling Modes

Handling mode	Handled by	Handling	PC and PSW contents
Vectored interrupt	Software	Branches to a handling routine for execution (arbitrary handling).	The PC and PSW contents are pushed to and popped from the stack.
		Automatically selects a register bank, and branches to a handling routine for execution (arbitrary handling).	The PC and PSW contents are saved to and read from a fixed area in the register bank.
	Firmware	Performs operations such as memory-to-I/O- device data transfer (fixed handling).	Maintained

9.1 Interrupt Source

An interrupt can be issued from any one of the interrupt sources listed in Table 9-2: execution of BRK and BRKCS instructions, an operand error, or any of the 23 other interrupt sources.

Four levels of interrupt handling priority can be set. Priority levels can be set to nest control during interrupt handling or to concurrently generate interrupt requests. Nested macro services, however, are performed without suspension.

When interrupt requests having the same priority level are generated, they are handled according to the default priority (fixed). (See Table 9-2.)

Table 9-2. Interrupt Sources

Type	Default priority	Source		Internal/ external	Macro service
		Name	Trigger		
Software	-	BRK instruction	Instruction execution	-	-
		BRKCS instruction			
		Operand error	When the MOV STBC,\#byte, MOV WDM,\#byte, or LOCATION instruction is executed, exclusive OR of the byte operand and $\overline{\text { byte }}$ does not produce FFH.		
Nonmaskable	-	NMI	Detection of edge input on the pin	External	-
		WDT	Watchdog timer overflow	Internal	
Maskable	0 (highest)	INTP0	Detection of edge input on the pin (TM1/TM1W capture trigger, TM1/TM1W event conter input)	External	Enabled
	1	INTP1	Detection of edge input on the pin (TM2/TM2W capture trigger, TM2/TM2W event conter input)		
	2	INTP2	Detection of edge input on the pin (TM2/TM2W capture trigger, TM2/TM2W event counter input)		
	3	INTP3	Detection of edge input on the pin (TM0 capture trigger, TM0 event counter input)		
	4	INTC00	TM0-CR00 match signal issued	Internal	Enabled
	5	INTC01	TM0-CR01 match signal issued		
	6	INTC10	TM1-CR10 match signal issued (in 8-bit operation mode) TM1W-CR10W match signal issued (in 16-bit operation mode)		
	7	INTC11	TM1-CR11 match signal issued (in 8-bit operation mode) TM1W-CR11W match signal issued (in 16-bit operation mode)		
	8	INTC20	TM2-CR20 match signal issued (in 8-bit operation mode) TM2W-CR20W match signal issued (in 16-bit operation mode)		
	9	INTC21	TM2-CR21 match signal issued (in 8-bit operation mode) TM2W-CR21W match signal issued (in 16-bit operation mode)		
	10	INTC30	TM3-CR30 match signal issued (in 8-bit operation mode) TM3W-CR30W match signal issued (in 16-bit operation mode)		
	11	INTP4	Detection of edge input on the pin	External	Enabled
	12	INTP5	Detection of edge input on the pin		
	13	INTAD	A/D converter processing completed (ADCR transfer)	Internal	Enabled
	14	INTSER	ASIO reception error		-
	15	INTSR	ASIO reception completed or CSI1 transfer completed		Enabled
		INTCSI1			
	16	INTST	ASIO transmission completed		
	17	INTCSI	CSIO transfer completed		
	18	INTSER2	ASI2 reception error		-
	19	INTSR2	ASI2 reception completed or CSI2 transfer completed		Enabled
		INTCSI2			
	20 (lowest)	INTST2	ASI2 transmission completed		

Remark ASI: Asynchronous serial interface
CSI: Synchronous serial interface

9.2 Vectored Interrupt

When a branch to an interrupt handling routine occurs, the vector table address corresponding to the interrupt source is used as the branch address.

Interrupt handling by the CPU consists of the following operations:

- When a branch occurs : Push the CPU status (PC and PSW contents) to the stack.
- When control is returned: Pop the CPU status (PC and PSW contents) from the stack.

To return control from the handling routine to the main routine, use the RETI instruction. The branch destination addresses must be within the range of 0 to FFFFH.

Table 9-3. Vector Table Address

Interrupt source	Vector table address
BRK instruction	003EH
Operand error	003CH
NMI	0002H
WDT	0004H
INTP0	0006H
INTP1	0008H
INTP2	000AH
INTP3	000CH
INTC00	000EH
INTC01	0010H
INTC10	0012H
INTC11	0014H
INTC20	0016H
INTC21	0018H
INTC30	001AH
INTP4	001CH
INTP5	001EH
INTAD	0020H
INTSER	0022H
INTSR	0024H
INTCSI1	
INTST	0026H
INTCSI	0028H
INTSER2	002AH
INTSR2	002CH
INTCSI2	
INTST2	002EH

9.3 Context Switching

When an interrupt request is generated, or when the BRKCS instruction is executed, an appropriate register bank is selected by the hardware. Then, a branch to a vector address stored in that register bank occurs. At the same time, the contents of the current program counter (PC) and program status word (PSW) are stacked in the register bank.

The branch address must be within the range of 0 to FFFFH.

Figure 9-1. Context Switching Caused by an Interrupt Request

9.4 Macro Service

The macro service function enables data transfer between memory and special function registers (SFRs) without requiring the intervention of the CPU. The macro service controller accesses both memory and SFRs within the same transfer cycle to directly transfer data without having to perform data fetch.

Since the CPU status is neither saved nor restored, nor is data fetch performed, high-speed data transfer is possible.

Figure 9-2. Macro Service

9.5 Examples of Macro Service Applications

(1) Serial interface transmission

Each time a macro service request (INTST) is generated, the next transmission data is transferred from memory to TXS. When data n (last byte) has been transferred to TXS (that is, once the transmission data storage buffer becomes empty), a vectored interrupt request (INTST) is generated.

(2) Serial interface reception

Each time a macro service request (INTSR) is generated, reception data is transferred from RXB to memory. When data n (last byte) has been transferred to memory (that is, once the reception data storage buffer becomes full), a vectored interrupt request (INTSR) is generated.

(3) Real-time output port

INTC10 and INTC11 function as the output triggers for the real-time output ports. For these triggers, the macro service can simultaneously set the next output pattern and interval. Therefore, INTC10 and INTC11 can be used to independently control two stepping motors. They can also be applied to PWM and DC motor control.

Each time a macro service request (INTC10) is generated, a pattern and timing data are transferred to the buffer register (P0L) and compare register (CR10), respectively. When the contents of timer register 1 (TM1) and CR10 match, another INTC10 is generated, and the POL contents are transferred to the output latch. When Tn (last byte) is transferred to CR10, a vectored interrupt request (INTC10) is generated.
For INTC11, the same operation as that performed for INTC10 is performed.

10. LOCAL BUS INTERFACE

The local bus interface enables the connection of external memory and I/O devices (memory-mapped I/O). It supports a 1M-byte memory space. (See Figure 10-1.)

Figure 10-1. Example of Local Bus Interface

10.1 Memory Expansion

By adding external memory, program memory or data memory can be expanded, 256 bytes at a time, to approximately 1 M byte (seven steps).

10.2 Memory Space

The 1M-byte memory space is divided into eight spaces, each having a logical address. Each of these spaces can be controlled using the programmable wait and pseudo-static RAM refresh functions.

Figure 10-2. Memory Space

10.3 Programmable Wait

When the memory space is divided into eight spaces, a wait state can be separately inserted for each memory space while the RD or WR signal is active. This prevents the overall system efficiency from being degraded even when memory devices having different access times are connected.

In addition, an address wait function that extends the ASTB signal active period is provided to produce a longer address decode time. (This function is set for the entire space.)

10.4 Pseudo-Static RAM Refresh Function

Refresh is performed as follows:

- Pulse refresh : A bus cycle is inserted where a refresh pulse is output on the REFRQ pin at regular intervals. When the memory space is divided into eight, and a specified area is being accessed, refresh pulses can also be output on the $\overline{R E F R Q}$ pin as the memory is being accessed. This can prevent the refresh cycle from suspending normal memory access.
- Power-down self-refresh : In standby mode, a low-level signal is output on the REFRQ pin to maintain the contents of pseudo-static RAM.

10.5 Bus Hold Function

A bus hold function is provided to facilitate connection to devices such as a DMA controller. Suppose that a bus hold request signal (HLDRQ) is received from an external bus master. In this case, upon the completion of the bus cycle being performed, the address bus, address/data bus, ASTB, $\overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$ pins are placed in the high-impedance state, and the bus hold acknowledge signal (HLDAK) is made active to release the bus for the external bus master.

While the bus hold function is being used, the external wait and pseudo-static RAM refresh functions are disabled.

11. STANDBY FUNCTION

The standby function allows the power consumption of the chip to be reduced. The following standby modes are supported:

- HALT mode : The CPU operation clock is stopped. By occasionally inserting the HALT mode during normal operation, the overall average power consumption can be reduced.
- IDLE mode : The entire system is stopped, with the exception of the oscillator circuit. This mode consumes only very little more power than STOP mode, but normal program operation can be restored in almost as little time as that required to restore normal program operation from HALT mode.
- STOP mode: The oscillator is stopped. All operations in the chip stop, such that only leakage current flows.

These modes can be selected by software.
A macro service can be initiated in HALT mode.

Figure 11-1. Standby Mode Status Transition

Notes 1. INTP4 and INTP5 are applied when not masked.
2. Only when the interrupt request is not masked

Remark NMI is enabled only by external input. The watchdog timer cannot be used to release one of the standby modes (STOP or IDLE mode).

12. RESET FUNCTION

Applying a low-level signal to the RESET pin initializes the internal hardware (reset status).
When the RESET input makes a low-to-high transition, the following data is loaded into the program counter (PC):

- Eight low-order bits of the PC : Contents of location at address 0000H
- Intermediate eight bits of the PC: Contents of location at address 0001H
- Four high-order bits of the PC : 0

The PC contents are used as a branch destination address. Program execution starts from that address. Therefore, a reset start can be performed from an arbitrary address.

The contents of each register can be set by software, as required.
The $\overline{R E S E T}$ input circuit contains a noise eliminator to prevent malfunctions caused by noise. This noise eliminator is an analog delay sampling circuit.

Figure 12-1. Accepting a Reset

For power-on reset, the $\overline{\text { RESET }}$ signal must be held active until the oscillation settling time (approximately 40 ms) has elapsed.

Figure 12-2. Power-On Reset

13. INSTRUCTION SET

(1) 8-bit instructions (The instructions enclosed in parentheses are implemented by a combination of operands, where A is described as r.)
MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, SHR, SHL, ROR4, ROL4, DBNZ, PUSH, POP, MOVM, XCHM, CMPME, CMPMNE, CMPMNC, CMPMC, MOVBK, XCHBK, CMPBKE, CMPBKNE, CMPBKNC, CMPBKC, CHKL, CHKLA

Table 13-1. Instructions Implemented by 8-Bit Addressing

	\#byte	A	r'	saddr saddr'	sfr	!addr16 !!addr24	mem [saddrp] [\%saddrg]	r3 PSWL PSWH	[WHL+] [WHL-]	n	NoneNote 2
A	(MOV) ADDNote 1	(MOV) (XCH) (ADD)Note 1	MOV XCH (ADD) Note 1	(MOV)Note 6 (XCH) Note 6 (ADD) Notes 1, 6	MOV (XCH) (ADD)Note 1	(MOV) (XCH) ADDNote 1	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{XCH} \end{aligned}$ ADDNote 1	MOV	(MOV) (XCH) (ADD) Note 1		
r	MOV ADDNote 1	(MOV) (XCH) (ADD)Note 1	MOV XCH ADDNote 1	MOV XCH ADDNote 1	MOV XCH ADDNote 1	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{XCH} \end{aligned}$				RORNote 3	MULU DIVUW INC DEC
saddr	MOV ADDNote 1	(MOV)Note 6 (ADD)Note 1	MOV ADDNote 1	MOV XCH ADDNote 1							INC DEC DBNZ
sfr	MOV ADDNote 1	MOV (ADD)Note 1	MOV ADDNote 1								PUSH POP CHKL CHKLA
!addr16 !!addr24	MOV	(MOV) ADDNote 1	MOV								
mem [saddrp] [\%saddrg]		MOV ADDNote 1									
mem3											ROR4 ROL4
r3 PSWL PSWH	MOV	MOV									
B, C											DBNZ
STBC, WDM	MOV										
$\begin{aligned} & {[T D E+]} \\ & {[T D E-]} \end{aligned}$		(MOV) (ADD)Note 1 MOVMNote 4							MOVBKNote 5		

Notes 1. ADDC, SUB, SUBC, AND, OR, XOR, and CMP are the same as ADD.
2. There is no second operand, or the second operand is not an operand address.
3. ROL, RORC, ROLC, SHR, and SHL are the same as ROR.
4. XCHM, CMPME, CMPMNE, CMPMNC, and CMPMC are the same as MOVM.
5. XCHBK, CMPBKE, CMPBKNE, CMPBKNC, and CMPBKC are the same as MOVBK.
6. When saddr is saddr2 with this combination, an instruction with a short code exists.
(2) 16-bit instructions (The instructions enclosed in parentheses are implemented by a combination of operands, where $A X$ is described as rp.)
MOVW, XCHW, ADDW, SUBW, CMPW, MULUW, MULW, DIVUX, INCW, DECW, SHRW, SHLW, PUSH, POP, ADDWG, SUBWG, PUSHU, POPU, MOVTBLW, MACW, MACSW, SACW

Table 13-2. Instructions Implemented by 16-Bit Addressing

	\#word	AX	$\begin{aligned} & \text { rp } \\ & \text { rp' } \end{aligned}$	saddrp saddrp'	strp	!addr16 !!addr24	mem [saddrp] [\%saddrg]	[WHL+]	byte	n	NoneNote 2
AX	(MOVW) ADDWNote 1	(MOVW) (XCHW) (ADD)Note 1	(MOVW) (XCHW) (ADDW) Note 1	(MOVW)Note 3 (XCHW) Note 3 (ADDW) Notes 1,3	$\begin{aligned} & \mathrm{MOVW} \\ & (\mathrm{XCHW}) \\ & \text { (ADDW) Note } 1 \end{aligned}$	(MOVW) XCHW	MOVW XCHW	(MOVW) (XCHW)			
rp	MOVW ADDWNote 1	(MOVW) (XCHW) (ADDW)Note 1	MOVW XCHW ADDWNote 1	MOVW XCHW ADDWNote 1	MOVW XCHW ADDWNote 1	MOVW				SHRW SHLW	MULWNote 4 INCW DECW
saddrp	MOVW ADDWNote 1	(MOVW)Note 3 (ADDW)Note 1	MOVW ADDWNote 1	MOVW XCHW ADDWNote 1							INCW DECW
sfrp	MOVW ADDWNote 1	MOVW (ADDW) Note 1	MOVW ADDWNote 1								$\begin{aligned} & \text { PUSH } \\ & \text { POP } \end{aligned}$
!addr16 !!addr24	MOVW	(MOVW)	MOVW						MOVTBLW		
mem [saddrp] [\%saddrg]		MOVW									
PSW											$\begin{aligned} & \text { PUSH } \\ & \text { POP } \end{aligned}$
SP	ADDWG SUBWG										
post											PUSH POP PUSHU POPU
[TDE+]		(MOVW)						SACW			
byte											MACW MACSW

Notes 1. SUBW and CMPW are the same as ADDW.
2. There is no second operand, or the second operand is not an operand address.
3. When saddrp is saddrp2 with this combination, an instruction with a short code exists.
4. MULUW and DIVUX are the same as MULW.
(3) 24-bit instructions (The instructions enclosed in parentheses are implemented by a combination of operands, where WHL is described as rg.)
MOVG, ADDG, SUBG, INCG, DECG, PUSH, POP

Table 13-3. Instructions Implemented by 24-Bit Addressing

2nd operand 1st operand	\#imm24	WHL	$\begin{aligned} & \text { rg } \\ & \text { rg' } \end{aligned}$	saddrg	!!addr24	mem1	[\%saddrg]	SP	NoneNote
WHL	(MOVG) (ADDG) (SUBG)	(MOVG) (ADDG) (SUBG)	(MOVG) (ADDG) (SUBG)	(MOVG) ADDG SUBG	(MOVG)	MOVG	MOVG	MOVG	
rg	MOVG ADDG SUBG	(MOVG) (ADDG) (SUBG)	MOVG ADDG SUBG	MOVG	MOVG				INCG DECG PUSH POP
saddrg		(MOVG)	MOVG						
!!addr24		(MOVG)	MOVG						
mem1		MOVG							
[\%saddrg]		MOVG							
SP	MOVG	MOVG							INCG DECG

Note There is no second operand, or the second operand is not an operand address.

(4) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR, BFSET

Table 13-4. Bit Manipulation Instructions Implemented by Addressing

2nd operand 1st operand	CY	saddr.bit sfr.bit A.bit X.bit PSWL.bit PSWH.bit mem2.bit !addr16.bit !!addr24.bit	/saddr.bit /sfr.bit /A.bit /X.bit /PSWL.bit /PSWH.bit /mem2.bit /!addr16.bit /!!addr24.bit	NoneNote
CY		MOV1 AND1 OR1 XOR1	AND1 OR1	NOT1 SET1 CLR1
saddr.bit sfr.bit A.bit X.bit PSWL.bit PSWH.bit mem2.bit !addr16.bit !!addr24.bit	MOV1		SET1 CLR1 BF BT BTCLR BFSET	NOT1

Note There is no second operand, or the second operand is not an operand address.
(5) Call/return instructions and branch instructions

CALL, CALLF, CALLT, BRK, RET, RETI, RETB, RETCS, RETCSB, BRKCS, BR, BNZ, BNE, BZ, BE, BNC, BNL, $B C, B L, B N V, B P O, B V, B P E, B P, B N, B L T, B G E, B L E, B G T, B N H, B H, B F, B T, B T C L R, B F S E T$, DBNZ

Table 13-5. Call/Return and Branch Instructions Implemented by Addressing

Instruction address operand	\$addr20	\$!addr20	!addr16	!!addr20	rp	rg	[rp]	[rg]	!addr11	[addr5]	RBn	None
Basic instruction	BCNote BR	CALL BR	CALL BR RETCS RETCSB	CALL BR	CALLF	CALLF	BRKCS	BRK RET RETI RETB				
Composite instruction	BF BT BTCLR BFSET DBNZ											

Note BNZ, BNE, BZ, BE, BNC, BNL, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, and BH are the same as BC.

(6) Other instructions

ADJBA, ADJBS, CVTBW, LOCATION, SEL, NOT EI, DI, SWRS

14. ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	Vod		-0.5 to +7.0	V
	AVDD		AVss to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
	AVss		-0.5 to +0.5	V
Input voltage	VI		-0.5 to VDD +0.5	V
Output voltage	Vo		-0.5 to VDD +0.5	V
Output low current	loL	At one pin	15	mA
		Total of all output pins	100	mA
Output high current	Іон	At one pin	-10	mA
		Total of all output pins	-100	mA
A/D converter reference input voltage	$\mathrm{AV}_{\text {Ref } 1}$		-0.5 to $\mathrm{VDD}+0.3$	V
D/A converter reference input voltage	$\mathrm{AV}_{\text {ref2 }}$		-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
	$\mathrm{AV}_{\text {REF }}$		-0.5 to VDD +0.3	V
Operating ambient temperature	TA		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$		-65 to +150	${ }^{\circ} \mathrm{C}$

Caution Absolute maximum ratings are rated values beyond which physical damage will be caused to the product; if the rated value of any of the parameters in the above table is exceeded, even momentarily, the quality of the product may deteriorate. Always use the product within its rated values.

OPERATING CONDITIONS

- Operating ambient temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \quad:-40$ to $+85^{\circ} \mathrm{C}$
- Rise time and fall time (tr, tf) (at pins which are not specified) : 0 to $200 \mu \mathrm{~s}$
- Power supply voltage and clock cycle time : See Figure 14-1.

Figure 14-1. Power Supply Voltage and Clock Cycle Time

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{VD}=\mathrm{Vs}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cl_{1}	$\mathrm{f}=1 \mathrm{MHz}$ 0 V on pins other than measured pins			10	pF
Output capacitance	Co				10	pF
I/O capacitance	Cıo				10	pF

OSCILLATOR CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V} \mathrm{DD}=+4.5$ to 5.5 V , V SS $=0 \mathrm{~V}$)

Resonator	Recommended circuit	Parameter	MIN.	MAX.	Unit
Ceramic resonator or crystal		Oscillator frequency (fxx)	4	32	MHz
External clock		X1 input frequency (fx)	4	32	MHz
	$\begin{array}{ll} \mathrm{X} 1 & \mathrm{X} 2 \\ \hline \end{array}$	X1 input rise and fall times (txR, txF)	0	10	ns
	HCMOS	X1 input high-level and lowlevel widths (twxh, twxı)	10	125	ns

Caution When using the system clock generator, run wires in the portion surrounded by broken lines according to the following rules to avoid effects such as stray capacitance:

- Minimize the wiring.
- Never cause the wires to cross other signal lines.
- Never cause the wires to run near a line carrying a large varying current.
- Cause the grounding point of the capacitor of the oscillator circuit to have the same potential as Vss1. Never connect the capacitor to a ground pattern carrying a large current.
- Never extract a signal from the oscillator.

OSCILLATOR CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V} D=+2.7$ to 5.5 V , V SS $=0 \mathrm{~V}$)

Resonator	Recommended circuit	Parameter	MIN.	MAX.	Unit
Ceramic resonator or crystal		Oscillator frequency (fxx)	4	16	MHz
External clock	$\begin{array}{ll} \text { X1 } & \text { X2 } \\ \hline \end{array}$	X1 input frequency (fx)	4	16	MHz
		X1 input rise and fall times (txe, txF)	0	10	ns
		X1 input high-level and lowlevel widths (twxн, twxı)	10	125	ns

Caution When using the system clock generator, run wires in the portion surrounded by broken lines according to the following rules to avoid effects such as stray capacitance:

- Minimize the wiring.
- Never cause the wires to cross other signal lines.
- Never cause the wires to run near a line carrying a large varying current.
- Cause the grounding point of the capacitor of the oscillator circuit to have the same potential as Vss1. Never connect the capacitor to a ground pattern carrying a large current.
- Never extract a signal from the oscillator.

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=+2.7$ to $5.5 \mathrm{~V}, \mathrm{~V}$ SS $\left.=\mathrm{AVSS}=0 \mathrm{~V}\right)(1 / 2)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input low voltage	VIL1	For pins other than those described in Notes 1, 2, 3, and 4	-0.3		0.3VdD	V
	VIL2	For pins described in Notes 1, 2, 3, and 4	-0.3		0.2 V D	V
	V Lı3	$V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$ For pins described in Notes 2, 3, and 4	-0.3		+0.8	V
Input high voltage	V_{1+1}	For pins other than those described in Note 1	0.7Vdo		$V_{D D}+0.3$	V
	V_{1+2}	For pins described in Note 1	0.8 VdD		$V_{D D}+0.3$	V
	VІнз	$V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$ For pins described in Notes 2, 3, and 4	2.2		$V_{D D}+0.3$	V
Output low voltage	VoL1	$\mathrm{loL}=2 \mathrm{~mA}$			0.4	V
	VoL2	$\begin{aligned} & \mathrm{VDD}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{loL}=8 \mathrm{~mA} \end{aligned}$ For pins described in Notes 2 and 5			1.0	V
Output high voltage	Voh1	$\mathrm{IOH}=-2 \mathrm{~mA}$	$V_{D D}-1.0$			V
	Vон2	$\begin{aligned} & \mathrm{VDD}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{IOH}=-5 \mathrm{~mA} \end{aligned}$ For pins described in Note 4	VDD - 1.4			V
X1 input low current	ILL	$\begin{aligned} & \text { EXTC }=0 \\ & 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{IL} 2} \end{aligned}$			-30	$\mu \mathrm{A}$
X1 input high current	IH	$\begin{aligned} & \hline \text { EXTC }=0 \\ & \mathrm{~V}_{\mathrm{H}_{2}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}} \end{aligned}$			+30	$\mu \mathrm{A}$

Notes 1. X1, X2, RESET, P12/ASCK2/SCK2, P20/NMI, P21/INTP0, P22/INTP1, P23/INTP2/CI, P24/INTP3, P25/INTP4/ASCK/解 1, P26/INTP5, P27/SI0, P32/SCK0/SCL, P33/SO0/SDA, TEST
2. AD0-AD7, A8-A15
3. P60/A16-P63/A19, $\overline{R D}, \overline{W R}, P 66 / \overline{W A I T} / H L D R Q, ~ P 67 / \overline{R E F R Q} / H L D A K$
4. P00-P07
5. P10-P17

DC CHARACTERISTICS $\left(T_{A}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{DD}=\mathrm{AVDD}=+2.7$ to $\left.5.5 \mathrm{~V}, \mathrm{~V} s \mathrm{~S}=\mathrm{AV} \mathrm{Ss}=0 \mathrm{~V}\right)(2 / 2)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input leakage current	ILI	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{DD}}$ For pins other than X1 when EXTC $=0$				± 10	$\mu \mathrm{A}$
Output leakage current	ILo	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{o}} \leq \mathrm{V}$ DD				± 10	$\mu \mathrm{A}$
VDD supply current	IDD1	Operation mode	$\begin{aligned} & \mathrm{fxx}_{\mathrm{x}}=32 \mathrm{MHz} \\ & \mathrm{VDD}=+5.0 \mathrm{~V} \pm 10 \% \end{aligned}$		25	45	mA
			$\begin{aligned} & \mathrm{f}_{\mathrm{Xx}}=16 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DD}}=+2.7 \text { to } 3.3 \mathrm{~V} \end{aligned}$		12	25	mA
	IDD2	HALT mode	$\begin{aligned} & \mathrm{fxx}_{\mathrm{x}}=32 \mathrm{MHz} \\ & \mathrm{~V} \mathrm{DD}=+5.0 \mathrm{~V} \pm 10 \% \end{aligned}$		13	26	mA
			$\begin{aligned} & f_{x x}=16 \mathrm{MHz} \\ & V_{\mathrm{DD}}=+2.7 \text { to } 3.3 \mathrm{~V} \end{aligned}$		8	12	mA
	IdD3	IDLE mode$(E X T C=0)$	$\begin{aligned} & f x x=32 \mathrm{MHz} \\ & V_{D D}=+5.0 \mathrm{~V} \pm 10 \% \end{aligned}$			12	mA
			$\begin{aligned} & \mathrm{f}_{\mathrm{Xx}}=16 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DD}}=+2.7 \text { to } 3.3 \mathrm{~V} \end{aligned}$			8	mA
Pull-up resistor	RL	$\mathrm{V}_{1}=0 \mathrm{~V}$		15		80	$\mathrm{k} \Omega$

AC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=+2.7$ to $5.5 \mathrm{~V}, \mathrm{~V} S \mathrm{AS}=\mathrm{AVSS}=0 \mathrm{~V}$)
(1) Read/write operation (1/2)

Remarks T: Tcyk (system clock cycle time)
a: 1 (during address wait), otherwise, 0
n : Number of wait states $(\mathrm{n} \geq 0)$
(1) Read/write operation (2/2)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Data setup time (to $\overline{\mathrm{WR}} \uparrow$)	tsoow	$V_{\text {DD }}=+5.0 \mathrm{~V} \pm 10 \%$	$(1.5+n) T-30$		ns
			$(1.5+n) T-40$		ns
Data hold time (to $\overline{\mathrm{WR}} \uparrow$) Note	thwod	$V_{\text {DD }}=+5.0 \mathrm{~V} \pm 10 \%$	0.5T-5		ns
			0.5T-25		ns
Delay from $\overline{\mathrm{WR}} \uparrow$ to ASTB \uparrow	towst		0.5T-12		ns
$\overline{\mathrm{WR}}$ low-level width	tww	$V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$	$(1.5+n) T-30$		ns
			$(1.5+n) T-40$		ns

Note The hold time includes the time during which VOH_{1} and $\mathrm{Vol1}$ are held under the load conditions of $\mathrm{CL}=50 \mathrm{pF}$ and $\mathrm{RL}=4.7 \mathrm{k} \Omega$.

Remarks T: TCYк (system clock cycle time)
n : Number of wait states $(\mathrm{n} \geq 0)$
(2) Bus hold timing

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Delay from HLDRQ \uparrow to float	tFhac			$(6+a+n) T+50$	ns
Delay from HLDRQ \uparrow to HLDAK \uparrow	tтноннан	$V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$		$(7+a+n) T+30$	ns
				$(7+a+n) T+40$	ns
Delay from float to HLDAK \uparrow	tDCFHA			$1 \mathrm{~T}+30$	ns
Delay from HLDRQ \downarrow to HLDAK \downarrow	tohalhal	$V_{\text {DD }}=+5.0 \mathrm{~V} \pm 10 \%$		$2 \mathrm{~T}+40$	ns
				$2 \mathrm{~T}+60$	ns
Delay from HLDAK \downarrow to active	tohac	$\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 10 \%$	1T-20		ns
			1T-30		ns

Remarks T: Tcyk (system clock cycle time)
a: 1 (during address wait), otherwise, 0
n : Number of wait states $(\mathrm{n} \geq 0)$
(3) External wait timing

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Delay from address to $\overline{\text { WAIT }} \downarrow$ input	tdawt	$V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$		$(2+a) T-40$	ns
				$(2+a) T-60$	ns
Delay from ASTB \downarrow to $\overline{\text { WAIT }} \downarrow$ input	tostwt	$V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$		1.5T-40	ns
				1.5T-60	ns
Hold time from ASTB \downarrow to $\overline{\text { WAIT }}$	thstwth	$V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$	$(0.5+n) T+5$		ns
			$(0.5+n) T+10$		ns
Delay from ASTB \downarrow to $\overline{\mathrm{WAIT}} \uparrow$	tostwth	$V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$		$(1.5+n) T-40$	ns
				$(1.5+n) T-60$	ns
Delay from $\overline{\mathrm{RD}} \downarrow$ to $\overline{\mathrm{WAIT}} \downarrow$ input	tDRWTL	$V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$		T-50	ns
				T-70	ns
Hold time from $\overline{\mathrm{RD}} \downarrow$ to $\overline{\mathrm{WAIT}} \downarrow$	thrwt	$V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$	$n T+5$		ns
			$\mathrm{nT}+10$		ns
Delay from $\overline{\mathrm{RD}} \downarrow$ to $\overline{\mathrm{WAIT}} \uparrow$	tDRWTH	$V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$		$(1+n) T-40$	ns
				$(1+n) T-60$	ns
Delay from $\overline{\text { WAIT }} \uparrow$ to data input	towtid	$V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$		0.5T-5	ns
				0.5T-10	ns
Delay from $\overline{\mathrm{WAIT}} \uparrow$ to $\overline{\mathrm{WR}} \uparrow$	towTw		0.5T		ns
Delay from $\overline{\text { WAIT }} \uparrow$ to $\overline{\mathrm{RD}} \uparrow$	tDwTR		0.5T		ns
Delay from $\overline{\mathrm{WR}} \downarrow$ to $\overline{\mathrm{WAIT}} \downarrow$ input	towwtL	$V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$		T-50	ns
				T-75	ns
Hold time from $\overline{\mathrm{WR}} \downarrow$ to $\overline{\mathrm{WAIT}}$	thwwt	$V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$	$\mathrm{nT}+5$		ns
			$n T+10$		ns
Delay from $\overline{\mathrm{WR}} \downarrow$ to $\overline{\mathrm{WAIT}} \uparrow$	tDwwth	$V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$		$(1+n) T-40$	ns
				$(1+n) T-70$	ns

Remarks T: Tcyk (system clock cycle time)
a: 1 (during address wait), otherwise, 0
n : Number of wait states $(\mathrm{n} \geq 0)$
(4) Refresh timing

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Random read/write cycle time	trc		3 T		ns
$\overline{\mathrm{REFRQ}}$ low-level pulse width	twrFQL	$V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$	1.5T-25		ns
			1.5T-30		ns
Delay from ASTB \downarrow to $\overline{\mathrm{REFRQ}}$	tostrfa		0.5T-9		ns
Delay from $\overline{\mathrm{RD}} \uparrow$ to $\overline{\mathrm{REFRQ}}$	tdrrfa		1.5T-9		ns
Delay from $\overline{\mathrm{WR}} \uparrow$ to $\overline{\mathrm{REFRQ}}$	towrfa		1.5T-9		ns
Delay from $\overline{\mathrm{REFRQ}} \uparrow$ to ASTB	tdragat		0.5T-15		ns
$\overline{\mathrm{REFRQ}}$ high-level pulse width	twrfar	$V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$	1.5T-25		ns
			1.5T-30		ns

Remark T: Tсүк (system clock cycle time)

SERIAL OPERATION ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=+2.7$ to 5.5 V , $\mathrm{AV} \mathrm{SS}=\mathrm{V} S \mathrm{~S}=0 \mathrm{~V}$)
(1) CSI

Parameter	Symbol	Conditions		MIN.	MAX.	Unit
Serial clock cycle time ($\overline{\text { SCKO }}$)	tcrsko	Input	External clock When $\overline{\text { SCKO }}$ and SOO are CMOS I/O	10/fxx +380		ns
		Output		T		$\mu \mathrm{s}$
Serial clock low-level width$\overline{(\text { SCKO })}$	twskLo	Input	External clock When $\overline{\text { SCKO }}$ and SOO are CMOS I/O	$5 / f x x+150$		ns
		Output		0.5T-40		$\mu \mathrm{s}$
Serial clock high-level width$\overline{(\text { SCKO })}$	twskHo	Input	External clock When $\overline{\text { SCKO }}$ and SOO are CMOS I/O	$5 / \mathrm{fxx}+150$		ns
		Output		0.5T-40		$\mu \mathrm{s}$
SIO setup time (to $\overline{\text { SCKO }} \uparrow$)	tsssko			40		ns
SIO hold time (to $\overline{\text { SCKO }} \uparrow$)	thssko			$5 / \mathrm{fxx}+40$		ns
SOO output delay time (to $\overline{\mathrm{SCKO}} \downarrow$)	tosbsk1	CMOS push-pull output (3-wire serial I/O mode)		0	$5 / f x x+150$	ns
	tosbsk2	Open-drain output (2-wire serial I/O mode), $R L=1 \mathrm{k} \Omega$		0	5/fxx +400	ns

Remarks 1. The values in this table are those when $C L$ is 100 pF .
2. T : Serial clock cycle set by software. The minimum value is $16 / \mathrm{fxx}$.
3. fxx : Oscillator frequency
(2) IOE1, IOE2

Parameter	Symbol	Conditions		MIN.	MAX.	Unit
Serial clock cycle time ($\overline{\text { SCK1 }}, \overline{\text { SCK } 2})$	tcrsk1	Input	$\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 10 \%$	250		ns
				500		ns
		Output	Internal, divided by 16	T		ns
Serial clock low-level width ($\overline{\mathrm{SCK} 1}, \overline{\mathrm{SCK} 2}$)	twskL1	Input	$V_{\text {DD }}=+5.0 \mathrm{~V} \pm 10 \%$	85		ns
				210		ns
		Output	Internal, divided by 16	0.5T-40		ns
Serial clock high-level width ($\overline{\text { SCK1 }}, \overline{\text { SCK } 2)}$	twskH1	Input	$\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 10 \%$	85		ns
				210		ns
		Output	Internal, divided by 16	0.5T-40		ns
Setup time for SI1 and SI2 (to $\overline{\mathrm{SCK} 1}, \overline{\mathrm{SCK} 2} \uparrow$)	tsssk1			40		ns
Hold time for SI1 and SI2 (to $\overline{\text { SCK } 1}, \overline{\text { SCK } 2} \uparrow$)	thssk 1			40		ns
Output delay time for SO1 and SO2 (to $\overline{\text { SCK1 }}, \overline{\text { SCK2 }} \downarrow$)	tososk			0	50	ns
Output hold time for SO1 and SO2 (to $\overline{\mathrm{SCK} 1}, \overline{\mathrm{SCK}} \uparrow$)	thsosk	When d	a is transferred	0.5tcrsk1 - 40		ns

Remarks 1. The values in this table are those when C_{L} is 100 pF .
2. T: Serial clock cycle set by software. The minimum value is $16 / \mathrm{fxx}$.
(3) UART, UART2

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASCK clock input cycle time	tcyask	$V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$	125		ns
			250		ns
ASCK clock low-level width	twaskl	$V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$	52.5		ns
			85		ns
ASCK clock high-level width	twaskh	$V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$	52.5		ns
			85		ns

OTHER OPERATIONS

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
NMI low-level width	twnil		10		$\mu \mathrm{s}$
NMI high-level width	twnit		10		$\mu \mathrm{s}$
INTPO low-level width	twitol		$3 \mathrm{tcYsMP}+10$		ns
INTP0 high-level width	twitor		$3 \mathrm{tcYsMP}+10$		ns
Low-level width for INTP1INTP3 and CI	twit1L		$3 \mathrm{tcycpu}+10$		ns
High-level width for INTP1INTP3 and CI	twitit		$3 \mathrm{tcycpu}+10$		ns
Low-level width for INTP4 and INTP5	twit2L		10		$\mu \mathrm{s}$
High-level width for INTP4 and INTP5	twit2H		10		$\mu \mathrm{s}$
$\overline{\text { RESET }}$ low-level width	twrsL		10		$\mu \mathrm{S}$
$\overline{\text { RESET }}$ high-level width	twrsh		10		$\mu \mathrm{s}$

Remarks tcysmp: Sampling clock set by software
tcycpu: CPU operation clock set by software in the CPU

A/D CONVERTER CHARACTERISTICS

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{DD}=\mathrm{AVDD}=\mathrm{AV}$ REF1 $=+2.7$ to $\left.5.5 \mathrm{~V}, \mathrm{~V} S \mathrm{SS}=\mathrm{AVSS}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8			bit
Total errorNote					1.0	\%
Linearity calibrationNote					0.8	\%
Quantization error					$\pm 1 / 2$	LSB
Conversion time	tconv	FR = 1	120			tcyk
		$\mathrm{FR}=0$	180			tcyk
Sampling time	tsamp	$F R=1$	24			tcyk
		$\mathrm{FR}=0$	36			tcyk
Analog input voltage	Vian		-0.3		$\mathrm{AV}_{\text {ReF }}+0.3$	V
Analog input impedance	Ran			1000		$\mathrm{M} \Omega$
AVREF1 current	Alref1			0.5	1.5	mA
AVDD supply current	Aldod	$\mathrm{fxx}=32 \mathrm{MHz}, \mathrm{CS}=1$		2.0	5.0	mA
	Aldo2	STOP mode, CS $=0$		1.0	20	$\mu \mathrm{A}$

Note Quantization error is not included. This parameter is indicated as the ratio to the full-scale value.

Remark tcyк: System clock cycle time

D/A CONVERTER CHARACTERISTICS ($T_{A}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{AVDD}=+2.7$ to $5.5 \mathrm{~V}, \mathrm{~V} S \mathrm{SS}=\mathrm{AVSS}=0 \mathrm{~V}$)

DATA RETENTION CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	Vddor	STOP mode	2.5		5.5	V
Data retention current	Iddor	VDDDR $=+2.7$ to 5.5 V		10	50	$\mu \mathrm{A}$
		$V_{\text {dDD }}=+2.5 \mathrm{~V}$		2	10	$\mu \mathrm{A}$
Vod rise time	tavD		200			$\mu \mathrm{s}$
Vdo fall time	tfvo		200			$\mu \mathrm{s}$
Vod hold time (to STOP mode setting)	thvo		0			ms
STOP clear signal input time	torel		0			ms
Oscillation settling time	twait	Crystal	30			ms
		Ceramic resonator	5			ms
Input low voltage	VIL	Specific pinsNote	0		$0.1 \mathrm{~V}_{\text {dodr }}$	V
Input high voltage	VIH		0.9 V dodr		Voddr	V

Note $\overline{R E S E T}, ~ P 20 / N M I, ~ P 21 / I N T P 0, ~ P 22 / I N T P 1, ~ P 23 / I N T P 2 / C I, ~ P 24 / I N T P 3, ~ P 25 / I N T P 4 / A S C K / \overline{S C K} 1$, P26/INTP5, P27/SI0, P32/SCK0/SCL, and P33/SO0/SDA pins

AC TIMING TEST POINTS

TIMING WAVEFORM

(1) Read operation

(2) Write operation

HOLD TIMING

EXTERNAL WAIT SIGNAL INPUT TIMING
(1)

Read operation

(2) Write operation

REFRESH TIMING WAVEFORM

(1) Random read/write cycle

(2) When refresh memory is accessed for a read and write at the same time

(3) Refresh after a read

(4) Refresh after a write

SERIAL OPERATION
(1) CSI

(2) IOE1, IOE2

(3) UART, UART2

INTERRUPT INPUT TIMING

INTP4, INTP5

RESET INPUT TIMING

EXTERNAL CLOCK TIMING

DATA RETENTION CHARACTERISTICS

15. PACKAGE DRAWINGS

80 PIN PLASTIC QFP (14×14)

detail of lead end

NOTE
Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	17.2 ± 0.4	0.677 ± 0.016
B	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
C	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
D	17.2 ± 0.4	0.677 ± 0.016
F	0.825	0.032
G	0.825	0.032
H	0.30 ± 0.10	$0.012_{-0.005}^{+0.004}$
I	0.13	0.005
J	$0.65($ T.P. $)$	$0.026($ T.P. $)$
K	1.6 ± 0.2	0.063 ± 0.008
L	0.8 ± 0.2	$0.031_{-0.009}^{+0.009}$
M	$0.15_{-0}^{+0.10}$	$0.006_{-0.003}^{+0.004}$
N	0.10	0.004
P	2.7	0.106
Q	0.1 ± 0.1	0.004 ± 0.004
R	$5^{\circ} \pm 5^{\circ}$	$5^{\circ} \pm 5^{\circ}$
S	3.0 MAX.	$0.119 \mathrm{MAX}$.
		S80GC-65-3B9-4

Remark The shape and material of the ES version are the same as those of the corresponding mass-produced product.

* 80 PIN PLASTIC QFP (14×14)

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	17.20 ± 0.20	0.677 ± 0.008
B	14.00 ± 0.20	$0.551+0.009$
C	14.00 ± 0.20	$0.551{ }_{-0.008}^{+0.009}$
D	17.20 ± 0.20	0.677 ± 0.008
F	0.825	0.032
G	0.825	0.032
H	0.32 ± 0.06	$0.013_{-0.003}^{+0.002}$
I	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
K	1.60 ± 0.20	0.063 ± 0.008
L	0.80 ± 0.20	$0.031_{-0.008}^{+0.009}$
M	$0.17{ }_{-0.07}^{+0.03}$	0.007 ${ }_{-0.001}^{+0.001}$
N	0.10	0.004
P	1.40 ± 0.10	0.055 ± 0.004
Q	0.125 ± 0.075	0.005 ± 0.003
R	$3^{\circ}{ }_{-3^{\circ}} 7^{\circ}$	$\begin{array}{r} 3^{\circ}+7^{\circ} \\ \\ 0 \end{array}$
S	1.70 MAX.	0.067 MAX.
		P80GC-65-8B

Remark The shape and material of the ES version are the same as those of the corresponding mass-produced product.

80 PIN PLASTIC TQFP (FINE PITCH) ($\square 12$)

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
B	12.0 ± 0.2	$0.472_{-0.008}^{+0.009}$
C	12.0 ± 0.2	$0.472_{-0.008}^{+0.009}$
D	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
F	1.25	0.049
G	1.25	0.049
H	$0.22_{-0.04}^{+0.05}$	0.009 ± 0.002
I	0.10	0.004
J	$0.5($ T.P. $)$	$0.020($ T.P. $)$
K	1.0 ± 0.2	$0.039_{-0.008}^{+0.009}$
L	0.5 ± 0.2	$0.020_{-0.009}^{+0.008}$
M	$0.145_{-0.045}^{+0.055}$	0.006 ± 0.002
N	0.10	0.004
P	1.05	0.041
Q	0.05 ± 0.05	0.002 ± 0.002
R	$5^{\circ} \pm 5^{\circ}$	$5^{\circ} \pm 5^{\circ}$
S	1.27 MAX.	0.050 MAX.
		P80GK-50-BE9-4

Remark The shape and material of the ES version are the same as those of the corresponding mass-produced product.

16. RECOMMENDED SOLDERING CONDITIONS

The conditions listed below shall be met when soldering the μ PD784031.
For details of the recommended soldering conditions, refer to our document Semiconductor Device Mounting Technology Manual (C10535E).

Please consult with our sales offices in case any other soldering process is used, or in case soldering is done under different conditions.

Table 16-1. Soldering Conditions for Surface-Mount Devices (1/2)
(1) μ PD784031GC-3B9: 80-pin plastic QFP $(14 \times 14 \times 2.7 \mathrm{~mm})$

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: $235^{\circ} \mathrm{C}$ Reflow time: 30 seconds or less $\left(210^{\circ} \mathrm{C}\right.$ or more) Maximum allowable number of reflow processes: 3	IR35-00-3
VPS	Peak package's surface temperature: $215^{\circ} \mathrm{C}$ Reflow time: 40 seconds or less $\left(200{ }^{\circ} \mathrm{C}\right.$ or more) Maximum allowable number of reflow processes: 3	VP15-00-3
Wave soldering	Solder temperature: $260{ }^{\circ} \mathrm{C}$ or less Flow time: 10 seconds or less Number of flow processes: 1 Preheating temperature : $120{ }^{\circ} \mathrm{C}$ max. (measured on the package surface)	
Partial heating method	Terminal temperature: $300{ }^{\circ} \mathrm{C}$ or less Heat time: 3 seconds or less (for one side of a device)	WS60-00-1

Caution Do not apply two or more different soldering methods to one chip (except for partial heating method for terminal sections).
(2) μ PD784031GC-8BT: 80-pin plastic QFP $(14 \times 14 \times 1.4 \mathrm{~mm})$

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: $235^{\circ} \mathrm{C}$ Reflow time: 30 seconds or less $\left(210^{\circ} \mathrm{C}\right.$ or more) Maximum allowable number of reflow processes: 2	IR35-00-2
VPS	Peak package's surface temperature: $215^{\circ} \mathrm{C}$ Reflow time: 40 seconds or less $\left(200{ }^{\circ} \mathrm{C}\right.$ or more) Maximum allowable number of reflow processes: 2	VP15-00-2
Wave soldering	Solder temperature: $260^{\circ} \mathrm{C}$ or less Flow time: 10 seconds or less Number of flow processes: 1 Preheating temperature : $120{ }^{\circ} \mathrm{C}$ max. (measured on the package surface)	
Partial heating method	Terminal temperature: $300{ }^{\circ} \mathrm{C}$ or less Heat time: 3 seconds or less (for one side of a device)	WS60-00-1

Caution Do not apply two or more different soldering methods to one chip (except for partial heating method for terminal sections).

Table 16-1. Soldering Conditions for Surface-Mount Devices (2/2)
(3) μ PD784031GK-BE9: 80-pin plastic TQFP (fine pitch) $(12 \times 12 \mathrm{~mm})$

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: $235^{\circ} \mathrm{C}$ Reflow time: 30 seconds or less $\left(210^{\circ} \mathrm{C}\right.$ or more) Maximum allowable number of reflow processes: 2 Exposure limit: 7 daysNote (10 hours of pre-baking is required at $125^{\circ} \mathrm{C}$ afterward) <Caution> Non-heat-resistant trays, such as magazine and taping trays, cannot be baked before unpacking.	
VPS	Peak package's surface temperature: $215{ }^{\circ} \mathrm{C}$ Reflow time: 40 seconds or less (200 ${ }^{\circ} \mathrm{C}$ or more) Maximum allowable number of reflow processes: 2 Exposure limit: 7 daysNote (10 hours of pre-baking is required at $125{ }^{\circ} \mathrm{C}$ afterward) $<C a u t i o n>$ Non-heat-resistant trays, such as magazine and taping trays, cannot be baked before unpacking.	
Partial heating method	Terminal temperature: $300{ }^{\circ} \mathrm{C}$ or less Heat time: 3 seconds or less (for one side of a device)	VP15-107-2

Note Maximum number of days during which the product can be stored at a temperature of $25^{\circ} \mathrm{C}$ and a relative humidity of 65% or less after dry-pack package is opened.

Caution Do not apply two or more different soldering methods to one chip (except for partial heating method for terminal sections).

APPENDIX A DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD784031.

Language Processing Software

RA78K4Note 1	Assembler package for all $78 \mathrm{~K} / \mathrm{IV}$ series models
CC78K4Note 1	C compiler package for all $78 \mathrm{~K} / \mathrm{IV}$ series models
CC78K4-LNote 1	C compiler library source file for all $78 \mathrm{~K} / \mathrm{IV}$ series models

PROM Write Tools

PG-1500	PROM programmer
PA-78P4026GC	Programmer adaptor, connects to PG-1500
PA-78P4038GK	
PA-78P4026KK	Control program for PG-1500
PG-1500 controllerNote 2	

Debugging Tools

IE-784000-R	In-circuit emulator for all 78K/IV sub-series models
IE-784000-R-BK	Break board for all 78K/IV series models
IE-784038-R-EM1 IE-784000-R-EM	Emulation board for evaluating μ PD784038 sub-series models
IE-70000-98-IF-B	Interface adapter when the PC-9800 series computer (other than a notebook) is used as the host machine
IE-70000-98N-IF	Interface adapter and cable when a PC-9800 series notebook is used as the host machine
IE-70000-PC-IF-B	Interface adapter when the IBM PC/ATTM is used as the host machine
IE-78000-R-SV3	Interface adapter and cable when the EWS is used as the host machine
EP-78230GC-R	Emulation probe for 80-pin plastic QFP (GC-3B9 and GC-8BT types) for all μ PD784038 sub-series
EP-78054GK-R	Emulation probe for 80-pin plastic TQFP (fine pitch) (GK-BE9 type) for all μ PD784038 sub-series
EV-9200GC-80	Socket for mounting on target system board made for 80-pin plastic QFP (GC-3B9 and GC-8BT types)
TGK-080SDW	Adapter for mounting on target system board made for 80-pin plastic TQFP (fine pitch) (GK-BE9 type)
EV-9900	Tool used to remove the μ PD78P4038KK-T from the EV-9200GC-80
SM78K4Note 3	System simulator for all 78K/IV series models
ID78K4Note 3	Integrated debugger for IE-784000-R
DF784038Note 4	Device file for all μ PD784038 sub-series models

Real-Time OS

RX78K/IVNote 4	Real-time OS for 78K/IV series models
MX78K4Note 2	OS for all 78K/IV series models

Notes 1. • Based on PC-9800 series (MS-DOSTM)

- Based on IBM PC/AT and compatibles (PC DOSTM, WindowsTM, MS-DOS, and IBM DOSTM)
- Based on HP9000 series 700TM (HP-UXTM)
- Based on SPARCstationTM (SunOSTM)
- Based on NEWSTM (NEWS-OSTM)

2. - Based on PC-9800 series (MS-DOS)

- Based on IBM PC/AT and compatibles (PC DOS, Windows, MS-DOS, and IBM DOS)

3. •Based on PC-9800 series (MS-DOS + Windows)

- Based on IBM PC/AT and compatibles (PC DOS, Windows, MS-DOS, and IBM DOS)
- Based on HP9000 series 700 (HP-UX)
- Based on SPARCstation (SunOS)

4. Based on PC-9800 series (MS-DOS)

- Based on IBM PC/AT and compatibles (PC DOS, Windows, MS-DOS, and IBM DOS)
- Based on HP9000 series 700 (HP-UX)
- Based on SPARCstation (SunOS)

Remarks 1. The RA78K4, CC78K4, SM78K4, and ID78K4 are used with the DF784038.
2. The TGK-080SDW is a product of TOKYO ELETECH CORPORATION (Tokyo, 03-5295-1661). Consult the NEC sales representative for purchasing.

APPENDIX B RELATED DOCUMENTS

Documents Related to Devices

	Document No.	
	Document name	Japanese
μ PD784031 Data Sheet	U11507J	This manual
μ PD784035, 784036, 784037, 784038 Data Sheet	U10847J	U10847E
μ PD78P4038 Data Sheet	U10848J	U10848E
μ PD784038, 784038Y Sub-Series User's Manual, Hardware	U11316J	U11316E
μ PD784038 Sub-Series Special Function Registers	U11090J	
$78 K / I V$ Series User's Manual, Instruction	U10905J	U10905E
$78 K / I V$ Series Instruction Summary Sheet	U10595J	
$78 K / I V$ Series Instruction Set	U10095J	-
$78 K / I V$ Series Application Note, Software Basic	-	

Documents Related to Development Tools (User's Manual)

Document name		Document No.	
		Japanese	English
RA78K4 Assembler Package	Operation	U11334J	U11334E
	Language	U11162J	-
RA78K Series Structured Assembler Preprocessor		EEU-817	EEU-1402
CC78K4 Series	Operation	EEU-960	-
	Language	EEU-961	-
CC78K Series Library Source File		EEU-777	-
PG-1500 PROM Programmer		EEU-651	EEU-1335
PG-1500 Controller PC-9800 Series (MS-DOS) Base		EEU-704	EEU-1291
PG-1500 Controller IBM PC Series (PC DOS) Base		EEU-5008	U10540E
IE-784000-R		EEU-5004	EEU-1534
IE-784038-R-EM1		U11383J	U11383E
EP-78230		EEU-985	EEU-1515
EP-78054GK-R		EEU-932	EEU-1468
SM78K4 System Simulator Windows Base	Reference	U10093J	U10093E
SM78K Series System Simulator	External Parts User Open Interface Specifications	U10092J	U10092E
ID78K4 Integrated Debugger Windows Base	Reference	U10440J	U10440E

Caution The above documents may be revised without notice. Use the latest versions when you design application systems.

Documents Related to Software to Be Incorporated into the Product (User's Manual)

Document name		Document No.	
		Japanese	English
78K/IV Series Real-Time OS	Basic	U10603J	-
	Installation	U10604J	-
	Debugger	U10364J	-
OS for 78K/IV Series MX78K4	Basic	U11779J	-

Other Documents

| Document name | Document No. | |
| :--- | :---: | :---: | :---: |
| | Japanese | English |
| IC PACKAGE MANUAL | C10943X | |
| SMD Surface Mount Technology Manual | C10535J | C10535E |
| Quality Grades on NEC Semiconductor Device | C11531J | C11531E |
| NEC Semiconductor Device Reliability/Quality Control System | C10983J | C10983E |
| Electrostatic Discharge (ESD) Test | MEM-539 | - |
| Guide to Quality Assurance for Semiconductor Device | C11893J | MEI-1202 |
| Guide for Products Related to Micro-Computer: Other Companies | C11416J | - |

Caution The above documents may be revised without notice. Use the latest versions when you design application systems.

NEC
[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

IEBus is a trademark of NEC Corporation.
MS-DOS and Windows are trademarks of Microsoft Corporation.
IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.
HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.
SPARCstation is a trademark of SPARC International, Inc.
SunOS is a trademark of Sun Microsystems, Inc.
NEWS and NEWS-OS are trademarks of SONY Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California
Tel: 800-366-9782
Fax: 800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490

NEC Electronics (UK) Ltd.

Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH NEC Electronics Hong Kong Ltd.
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

Some related documents may be preliminary versions. Note that, however, what documents are preliminary is not indicated in this document.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

